
1

Optimal Quantization for Matrix Multiplication
Or Ordentlich and Yury Polyanskiy

Abstract

Recent work in machine learning community proposed multiple methods for performing lossy compression
(quantization) of large matrices. This quantization is important for accelerating matrix multiplication (main component
of large language models), which is often bottlenecked by the speed of loading these matrices from memory. Unlike
classical vector quantization and rate-distortion theory, the goal of these new compression algorithms is to be able to
approximate not the matrices themselves, but their matrix product. Specifically, given a pair of real matrices A,B an
encoder (compressor) is applied to each of them independently producing descriptions with R bits per entry. These
representations subsequently are used by the decoder to estimate matrix product A⊤B. In this work, we provide
a non-asymptotic lower bound on the mean squared error of this approximation (as a function of rate R) for the
case of matrices A,B with iid Gaussian entries. Algorithmically, we construct a universal quantizer based on nested
lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices A, B in terms of
only Frobenius norms ∥A∥F , ∥B∥F and ∥A⊤B∥F . For iid Gaussian matrices our quantizer achieves the lower bound
and is, thus, asymptotically optimal. A practical low-complexity version of our quantizer achieves performance quite
close to optimal. In information-theoretic terms we derive rate-distortion function for matrix multiplication of iid
Gaussian matrices.

CONTENTS

I Introduction and main results 2
I-A Importance of quantization for modern applications . 4
I-B Sketch of the proof . 5
I-C Related work . 6
I-D Paper organization . 8
I-E Notation . 9

II Compression for Inner-Product Computation: General Problem Setup and Simple Bounds 9
II-A Optimal Decoder and Error Expressions . 10
II-B Simple Lower Bounds . 10

III Compression for Inner-Product Computation: The Symmetric Case 11
III-A Upper Bound . 11
III-B Lower Bound . 12
III-C The Symmetric Gaussian case . 14

IV Compression for Matrix Multiplication 14
IV-A Setup . 14
IV-B Basic Properties and Bounds . 14
IV-C Maximum Entropy Matrices . 15
IV-D Fundamental Limits . 16
IV-E The Symmetric Gaussian case . 17

V Lattice Quantization Scheme for Matrix Multiplication of Arbitrary Matrices 17
V-A Proof of Theorem 11, Part 1 . 20

V-A1 Dithered Nested Lattice Quantization for Inner Product 20
V-A2 Analysis . 20
V-A3 Time Sharing . 22

V-B Proof of Theorem 11, Part 2 . 23
V-C Proof of Theorem 12 . 24

O. Ordentlich is with the Hebrew University of Jerusalem, Israel (or.ordentlich@mail.huji.ac.il). Y. Polyanskiy is with the
MIT, USA (yp@mit.edu). The work of OO was supported by the Israel Science Foundation (ISF), grant No. 1641/21. The work of YP was
supported in part by the MIT-IBM Watson AI Lab and by the National Science Foundation under Grant No CCF-2131115.

2

VI Practical Implementation of Nested Lattice Quantizers 24

VII Open problems 28

Appendix A: Convex envelope of Γ1(R) 29

Appendix B: Projections of Random Uniform Orthogonal Vectors 30

References 31

I. INTRODUCTION AND MAIN RESULTS

Matrix multiplication is a key component of many numerical algorithms, and is often the dominant factor in the
runtime of a program. With the surge of deep neural nets (DNNs) and large language models (LLMs), finding more
efficient ways to perform matrix multiplication have become one of the most pressing challenges. Classical work
in this field focused on minimizing the number of required operations [1], [2], [3], [4]. Specifics of contemporary
problems, however, require rethinking this classical approach to matrix multiplication. First, in machine learning
applications requirements for precision of computing matrix products are quite lax. Second, modern computational
hardware is often bottlenecked by the memory bandwidth. A natural solution explored by many researchers is to
apply lossy compression to matrices leading to deterioration in precision but improvement in the amount of data
transferred between memory and computation cores.

We formalize this problem as follows. Consider a pair of matrices A ∈ Rn×a and B ∈ Rn×b which need to be
described using R bits per entry (using separate compressors), such that a decoder that obtains bit descriptions of both
matrices can estimate Â⊤B. The metric for gauging quality of approximation that we will use is the squared error
between ab entries of Â⊤B and A⊤B. Note that unlike classical vector quantization, we are requiring compression
algorithms to be tailored to the special task of matrix multiplication. As a practical motivation, in Section I-A
below we argue that reducing R down to a few bits/entry is necessary for LLMs to fully leverage modern matrix
multiplication hardware.

Our main result shows existence of universal quantizers (based on lattices) which compress A and B to R
bits/entry and come with explicit precision guarantees. Furthermore, we also show that these guarantees cannot be
generally improved by proving a matching lower bound for the case of matrices A and B with iid Gaussian entries.
We emphasize, though, that quantizers are universal and do not require Gaussian matrices.

To introduce our main results, let us define the function

Γ(R) =

{
1−

(
1− (2 · 2−2R∗ − 2−4R∗

)
)

R
R∗ R < R∗

2 · 2−2R − 2−4R R ≥ R∗ . (1)

where R∗ ≈ 0.906 is the solution to the fixed-point equation

R =
1

2
log2(1 + 4R ln 2) (2)

It will turn out that Γ(R) is distortion-rate function for the matrix multiplication of iid Gaussian matrices.
We say that a matrix A ∈ Rn×m has “bounded entries” if |ai,j | ∈ {0} ∪ [2−2000, 22000] for all i ∈ [n], j ∈ [m].

This extremely mild condition guarantees that we can describe the ℓ2 norm of each column of A with small
multiplicative error using o(n) bits (see Section V). Our first result is the following.

Theorem 1: For any ε > 0 and sufficiently large n

1) There exist randomized encoders f1 : Rn×a → [2naR], f2 : Rn×b → [2nbR], and decoder g : [2naR]×[2nbR]→
Ra×b, such that for any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

E∥A⊤B − g(f1(A), f2(B))∥2F < ∥A⊤B∥2F · (Γ2(R) + ε) +
∥A∥2F ∥B∥2F

n
(Γ(R)− Γ2(R) + ε)). (3)

Furthermore, denoting A = [a1| · · · |aa] and B = [b1| · · · |bb], where ai, bj ∈ Rn are the columns of A and B,
C = A⊤B and Ĉ = g(f1(A), f2(B)), the have that

E(Ci,j − Ĉi,j)
2 ≤ C2

i,j · (Γ2(R) + ε) +
∥ai∥2∥bj∥2

n
(Γ(R)− Γ2(R) + ε)), ∀i ∈ [a], j ∈ [b]. (4)

3

2) There exist a randomized encoder f : Rn×a → [2naR] and decoder g : [2naR]× Rn×b → Ra×b, such that for
any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

E∥A⊤B − g(f(A), B)∥2F < ∥A⊤B∥2F · (2−4R + ε) +
∥A∥2F ∥B∥2F

n
(2−2R − 2−4R + ε)). (5)

Furthermore,

E(Ci,j − Ĉi,j)
2 ≤ C2

i,j · (2−4R + ε) +
∥ai∥2∥bj∥2

n
(2−2R − 2−4R + ε)), ∀i ∈ [a], j ∈ [b]. (6)

where Ĉ = g(f(A), B).
Note that two parts simply describe the cases, where both or only one matrix needs to be compressed.1 For the

second part, where only A needs to be compressed, note that if the entries of A are iid N (0, σ2) and B is the n×n
identity matrix, the right hand sides of (5) and (6) read naσ2(2−2R + 2ε) and σ2(2−2R + 2ε), respectively, which
are optimal, as they correspond to the Gaussian rate-distortion function. For the first part, where both matrices are
compressed, our scheme operates by compressing each column of A and B using the same (randomized) quantizer
fcol : Rn → [2nR], which is applied repeatedly to every column. The decoder g simply estimates each column
to get matrices Â and B̂ and computes their matrix product. For rates R > R∗ compressor fcol compresses all
coordinates, while for R < R∗ a fraction 1− (R

R∗) of coordinates are ignored (mapped to 0). The “sparsification” is
necessary to achieve asymptotically optimal quantization and was one of the main surprises of this work, compared
to standard vector quantization.

To get a feel for Theorem 1 let us consider independent matrices A and B drawn iid Gaussian N (0, σ2). We
have that E∥A⊤B∥2F =

E∥A∥2
F ∥B∥2

F

n = σ4 · nab in this case and Theorem 1 shows estimate

E[∥A⊤B − Â⊤B∥2F] ≤ σ4nab(Γ(R) + ϵ) .

It turns out that this is the best possible approximation (at this compression rate), as shown in our next result.
Theorem 2: Let A ∈ Rn×a and B ∈ Rn×b be independent random matrices, with iid N (0, σ2) entries.

1) For any n ≥ 1, and any pair of rate-R encoders f1 : Rn×a → [2naR], f2 : Rn×b → [2nbR] and decoder
g : [2naR]× [2nbR]→ Ra×b, we have

E∥A⊤B − g(f1(A), f2(B))∥2F ≥ σ4 · nab · Γ(R). (7)

2) For any n ≥ 1, and any rate-R encoder f : Rn×a → [2naR] and decoder g : [2naR]×Rn×b → Ra×b, we have

E∥A⊤B − g(f(A), B)∥2F ≥ σ4 · nab · 2−2R. (8)

In other words, the encoders f1, f2, g from Theorem 1 attain the lower bound from Theorem 2, and are therefore
asymptotically optimal for this class of matrices.

We also show a simpler to use bound, based on a compression scheme that does not use a step of “MMSE
scaling” and also does not use time-sharing. The resulting bound does not meet the lower bound of Theorem 2 for
Gaussian iid matrices. However, for moderate R it is never much worse than the bound from Theorem 1. For some
matrices A,B it is significantly better than the bound from Theorem 1.

Theorem 3: For any ε > 0 and sufficiently large n

1) There exist randomized encoders f1 : Rn×a → [2naR], f2 : Rn×b → [2nbR], and decoder g : [2naR]×[2nbR]→
Ra×b, such that for any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

E∥A⊤B − g(f1(A), f2(B))∥2F <
∥A∥2F ∥B∥2F

n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
, (9)

Furthermore, we have that

E(Ci,j − Ĉi,j)
2 ≤ ∥ai∥

2∥bj∥2

n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
, ∀i ∈ [a], j ∈ [b], (10)

where C, Ĉ, ai, bj are as in Theorem 1.

1corresponding to the case of “weights and attention” quantization and “weights-only” quantization in LLMs.

4

2) There exist a randomized encoder f : Rn×a → [2naR] and decoder g : [2naR]× Rn×b → Ra×b, such that for
any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

E∥A⊤B − g(f(A), B)∥2F <
∥A∥2F ∥B∥2F

n

(
1

22R − 1
+ ε)

)
, (11)

Furthermore,

E(Ci,j − Ĉi,j)
2 ≤ ∥ai∥

2∥bj∥2

n

(
1

22R − 1
+ ε

)
, ∀i ∈ [a], j ∈ [b]. (12)

where Ĉ = g(f(A), B).

Note that the term ∥A⊤B∥2F does not appear at all in Theorem 3, and whenever ∥A⊤B∥2 ≫ ∥A∥2
F ∥B∥2

F

n the
error in Theorem 3 is significantly smaller than the error in Theorem 1.

To put Theorem 3 in context, we note that recent work in LLMs suggested to use random rotation of A and B
and then quantize each column of the rotated matrices using sub-optimal lattice quantizers [5], [6]. See more in
Section I-C. In particular, a popular choice is to use the scalar quantizer, which is equivalent to quantizing to the
lattice Zn with a cubic shaping region. In practice, to apply the scalar quantizer on a vector ai ∈ Rn, the common
approach in the DNN and LLM literature is to store ∥ai∥∞, then normalize to ãi = ai/∥ai∥∞ such that all entries
of ãi are in [−1, 1], then use a R-bit scalar quantizer with dynamic range [−1, 1], and finally rescale the result by
∥ai∥∞. See, e.g. [6]. If the vector ai is uniform on

√
nSn−1 (the sphere with radius

√
n), then for large n we

have that ∥ai∥∞ concentrates around
√
2 lnn. It follows that the expected squared quantization error this quantizer

attains per entry is
(
2
3 lnn

)
2−2R. Using this quantizer for matrix multiplication (after rotating each matrix by the

same random rotation) therefore results in

E(Ci,j − Ĉi,j)
2 ≤ ∥ai∥

2∥bj∥2

n

(
2

3
lnn

)(
2 · 22R + 2

3 lnn

(22R)2

)
, ∀i ∈ [a], j ∈ [b]. (13)

Thus, replacing the scalar quantizer Zn with a high-dimensional pair of “good” nested lattices, as we do in the
proof of Theorem 3 saves a factor of 2

3 lnn in the expected squared error for moderate R.

The scheme used for proving Theorem 3 is based on using high-dimensional nested lattices with some asymptot-
ically optimal properties. Unfortunately, such lattices do not lend themselves to efficient implementation. Another
key contribution of this paper, described in Section VI, is a simplified nested-lattice quantization scheme, that
is similar to the one used in the proof of Theorem 3, but is based on low-dimensional nested lattices. For such
lattices, we provide a very fast implementation, whose efficiency does not depend on R. the simplified scheme
attains performance fairly close to theoretical estimates therein. We believe the resulting quantization-based matrix
multiplication scheme to be a good candidate for practical application in LLMs and other algorithms relying on
heavy matrix multiplication operations and tolerant to approximation errors.

Additional contributions of this work include the following:
• We study the inner product case a = b = 1, in full generality, assuming the entries of A are drawn iid from

distribution P , the entries of B are drawn iid from distribution Q, and the rates R1 and R2 are not necessarily
equal. We derive several upper and lower bounds on the smallest attainable distortion in computing the inner
product, and prove some results on the structure of the optimal encoders and decoder.

• For the matrix multiplication case, when the entries of A and B are drawn iid from a distribution P with zero
mean and variance σ2, we show that (7) continues to hold with Γ(R) replaced by Γ(R+D(P∥N (0, σ2)).

The proofs of the main results are briefly sketched in Section I-B. We proceed to motivation and review of the
literature.

A. Importance of quantization for modern applications

To set the stage for the problem, let us estimate what level of quantization (in bits / entry) would be relevant
for today’s main consumer of matrix multiplications: the large language models (LLMs). For those, quantization is
typically employed for accelerating inference. During inference LLM is busy computing many products A⊤B of
matrices with sizes d× a and d× b respectively. This requires 2abd FLOPs and ad+ bd+ ab entries to load/store
from memory. Ideally, we would want to quantize entries in such a way that all compute is fully utilized. For that
we need to know the ratio ξ of available FLOPs to available memory bandwidth, a quantity known as “ops:bytes”
of a processor. It ranges from ξ = 5 . . . 20 for modern CPUs (FP32 arithmetic via AVX512) to ξ ≈ 300 for the

5

fastest GPUs (FP16 on an H100). The quantization rate saturating compute should then be bounded (in bits/entry)
as

R <
16

ξ

ab

a+ b+ ab
d

. (14)

It turns out that there are two stages of running inference with LLMs: the pre-fill (when the input prompt is
processed) and the generation (when response tokens are sequentially generated). During the pre-fill LLM we have
a = d and b = L (d is the so-called hidden dimension and L is the sequence length), while during the generation
we have a = L and b = 1 (the A matrix coming from KV-cache and B matrix being new token’s embedding).
Thus, to saturate the computation core, we need

Rpre-fill =
16Ld

ξ(d+ 2L)
, Rgenerate =

16L

ξ(L+ 1 + L/d)
≈ 16

ξ
.

We can see that during generation phase, on CPUs we would want to approach 1-3 bits/entry, while on GPUs
we will not be able to ever saturate compute (that is, a decrease in quantization rate translates proportionally to
decrease in runtime). For the pre-fill phase, for large LLMs we get Rgenerate > 16 bit (that is, just storing plain FP16
is already good enough). Quantization is still important for “small” LLMs running on fast (H100-like) GPUS: for
example, for BERT [7] we have L = 512, d = 768 and ξ = 300 (for an H100), resulting in pre-fill phase requiring
quantization rate R ≈ 11.7 bit/entry.

B. Sketch of the proof

This work started with the goal of trying to understand approximate matrix multiplication for two matrices A
and B which are random, with iid Gaussian entries N (0, 1). We started by trying to solve the case of a = b = 1
(Sections II and III), i.e. when A⊤B is simply an inner product of two iid Gaussian vectors.

Recall that the Gaussian distortion-rate function D(R) = 2−2R, e.g. [8, Section 26.1.2]. A simple argument
(Thm. 5) shows that compressing A to Â and B to B̂ via rate-R optimal Gaussian vector quantizer achieves error

E[(Â⊤B̂ −A⊤B)2] ≤ ϕ(D(R)), ϕ(x) := 2x− x2 .

It turned out that the function ϕ(D(R)) is monotonically decreasing but not convex. Thus, via time-sharing one
can achieve a lower convex envelope of ϕ(D(R)), which turns out to be the Γ(R) function defined in (1).

We next proceed to lower bounds on distortion or, equivalently, to upper bounds on rate R required for the
existence of encoders f1, f2 and decoder g satisfying

E[(g(f1(A), f2(B))−A⊤B)2] ≤ nD (15)

A simple oracle bound (by revealing B to the decoder) shows that rate R cannot be smaller than the standard Shannon
rate-distortion function of A, see Theorem 4. However, this bound leaves a wide gap with the achievability bound
given above. Next, by a standard data-processing argument (and observation that encoders for A and B can be
without loss of generality be taken identical) in Section III-B we deduce that 15 requires rate

R ≥ lim sup
n→∞

1

n
inf
Â
{I(A; Â) :

1

n

n∑
i=1

ϕ(λi) ≤ D} , (16)

where A ∼ N (0, In), infimum is over all Rn-valued random variables Â and {λi} are the eigenvalues of Cov(A|Â).
This reduces inner-product quantization to an optimization of a multi-letter mutual information. Notice that the
distortion constraint is no longer separable, and hence the standard single-letterization (e.g. [8, Theorem 24.8])
does not work and the limit on the right-hand side is not possible to evaluate. For the special case of Gaussian
distribution of entries of A we were able to single-letterize the expression on the right-hand side of (16), see
Theorem 6, showing that left-hand side of (16) evaluates to Γ−1(D). Putting both upper and lower bounds together,
we conclude that optimal compression rate for the iid Gaussian inner-product problem is thus given by Γ−1(D),
see Theorem 7.

We next proceed to solving the matrix case. Luckily, it turns out that for Gaussian iid matrices, again, the optimal
compression for matrix multiplication of A⊤B is asymptotically achieved by compressing each column separately
via the use of optimal inner-product quantizers, see Theorems 8 and 9.

Having solved the iid Gaussian case, we “derandomize” our constructions by following the work of [9]. Specifi-
cally, for the inner product problem, applying the same random orthogonal rotation to two arbitrary vectors we can

6

create vectors whose marginal distribution is uniform on the sphere, while their inner product is unchanged by the
random rotation. The important observation is that a high-dimensional vector that is uniform on the sphere is very
similar to an iid Gaussian vector (for example, in terms of joint distribution of small O(

√
n)-sized subsets). Thus,

after random rotation we may hope to achieve compression performance of iid Gaussian matrices. Indeed, using a
“good” nested lattice quantizer, in the sense of [9], we can obtain a reconstruction error that depends only on the
inner product between the vectors and their individual ℓ2 norms, see Theorems 11 and 12. Since the performance
bounds coincides with the lower bound for the iid Gaussian case, it turns out that the resulting quantizers are
optimal and generally cannot be improved (except in terms of finite-n dependence).

Together these steps complete proof of the main results quoted above.

C. Related work

Randomized linear algebra/sketching, and locality-sensitive hashing (LSH) are techniques widely used in practice,
to compute approximate inner products and approximate matrix multiplications, as well as other operations, in
reduced dimensions. The figure of merit in these fields is typically the tradeoff between the reduced dimension and
the approximation error. Since the dimension of the reduced matrix/vector is related to the number of bits required
for storing it, this body of work is relevant to our study. However, the tradeoff between the number of bits per
dimension and the total approximation error, and its dependence on the properties of A, B and A⊤B is often subtle.
Thus, there is no immediate translation between the required dimension of a sketch and the number of bits needed
for representing it for obtaining the required accuracy.

Many algorithms have been developed for randomized linear algebra, see [10], [11] for a survey, and in particular
for approximate matrix multiplication. A canonical example is the Monte-Carlo Matrix Multiplication (MCMM)
algorithm [12] which randomly samples (the same) c rows from A ∈ Rn×a and B ∈ Rn×b and estimates A⊤B as
the (scaled) matrix multiplication of the sub-sampled matrices. Thus, each matrix is represented by ac (respectively
bc real numbers), and the expected squared Frobenius norm of the approximation error is shown to scale like
O(∥A∥2F ∥B∥2F /c). Similarly, LSH for cosine similarity or ℓ2 distance also produce low-dimensional sketches of
u ∈ Rn and v ∈ Rn, from which the inner product of u⊤v can be approximated. Specifically, in [13] it is proposed
to project the two vectors using c random projections (same random projections for both vectors) and only store the
sign of each projection. The Hamming distance between the obtained vectors is distributed as Binomial

(
c, θ(u,v)

π

)
where2 θ(u, v) = cos

(
u⊤v

∥u∥·∥v∥

)
, such that the expected squared error in estimating θ(u, v) is O(1/c). In [14] it

is proposed to estimate ∥u− v∥ (which is equivalent to estimating u⊤v for u and v on the sphere) by computing
Gaussian linear combinations of each of them, and using a (dithered) scalar quantizer for quantizing each of
the entries of the linear combinations. Specifically, for a vector G ∈ Rn, with iid N (0, 1) entries, we have that
G⊤(u− v) ∼ N (0, ∥u− v∥2), and therefore the probability that G⊤u and G⊤v are quantized (after dithering) to
the same value is a monotone function of ∥u− v∥.

All the schemes mentioned above, as well as many other sketching/LSH schemes suffer from the same short-

coming: their relative error E∥Â⊤B−A⊤B∥2
F

∥A⊤B∥2
F

scales like O
(

1
c
∥A∥2

F ∥B∥2
F

∥A⊤B∥2
F

)
, and typically these schemes are applied

with constant c. When ∥A∥2
F ∥B∥2

F

∥A⊤B∥2
F

= Ω(1), these schemes perform remarkably well, despite the fact that c does

not grow with n. However, when ∥A∥2
F ∥B∥2

F

∥A⊤B∥2
F

= ω(1), as is the case for random iid matrices, their relative error
is very high. A notable exception is the algorithm proposed by Pagh in [15], which represents each matrix using
n·min{m, a} (respectively n·min{m, b}) real numbers, and produces an unbiased estimator for A⊤B with expected

error of E
(
(Â⊤B)i,j − (A⊤B)i,j

)2
= O

(
∥A⊤B∥2

F

m

)
, for all i, j, and does so with runtime proportional to n2+nm

(ignoring logarithmic factors). When the product A⊤B is known to be highly sparse, this allows to estimate the
sparsity pattern with m proportional to the number of nonzero entries.

The topic of matrix quantization has received much attention in the last decade in the context of DNNs and
LLMs. The goal here is to reduce the memory footprint of the weight matrices, allowing to load them to the
main memory using less IOs, as well as speed up the multiplications and additions operations by moving from
floating point numbers to small integers (and when possible, also sparsifying the matrices, saving some operations
altogether). Roughly speaking, one can distinguish between two paradigms: quantization-aware training, where the
training procedure is designed to output weight matrices with “cheap” representation [16], [17], and post-training

2In this paper, whenever the type of the norm ∥ · ∥ is not specified, it is the Euclidean (ℓ2) norm.

7

quantization, where the training procedure is performed in high precision, and quantization of the weights is only
performed after training has terminated (perhaps with some fine tuning afterwards) [18], [19], [20], [21], [22], [23],
[5]. In order to further speed up matrix multiplication, some works also develop quantizers for the activations [19],
[21], [22], [23], while other works assume the activations are kept in high precision [18], [5]. Quantization for
DNNs and LLMs are typically evaluated according to the end-to-end performance of the quantized architecture,
but often the Frobenius norm of the approximation error is considered as the intermediate optimization criterion
for quantizing the weights at each layer [16], [24]. Some works rely on specific empirical observations on the
distribution of weights and activations in LLMs. For example [20], [21], [22] exploit the fact that a small subset of
entries in the activations have significantly larger magnitude than the majority of entries. Most notably, in [23] it is
observed that for large LLMs, quantizing all weights to {−1, 0, 1} and the activations to 8 bits, hardly affects the
overall performance. Among the work described above, the algorithm from [5] is closest to the scheme we use in
the proof of our Theorem 1 and Theorem 3, as well as the practical adaptation of the scheme used in those proofs,
which is described in Section VI. The work [5] develops an algorithm for quantizing the weight matrices (keeping
the activations in high precision) that is based on random rotation using the randomized Hadamard transform (that
can be performed in time n log n) and then using the E8 lattice for quantizing the rotated matrix. The mapping from
lattice points to bits that was used in [5] required access to a lookup table, and was tailor-designed for R = 2, while
using different rates requires to further use successive refinement. While our practical scheme in Section VI also
uses product-lattice quantization, we use a nested lattice quantizer, which results in a simple mapping from lattice
points to bits, regardless of R. Furthermore, we quantize both matrices to be multiplied. In addition to reducing
the limitations incurred by the memory bandwidth, an additional benefit of quantizing both matrices, is that one
can replace the decoder with a lookup table, as in [25], [26], [27], [28], resulting in very fast decoding in CPUs.
Furthermore, our quantizers are universal - that is, they do not depend on the distribution of the entries in the
matrices to be multiplied, and the approximation error depends only on the Frobenius norms of these matrices. The
quantizer design procedure in [5], on the other hand, utilizes the empirical distribution of the activations to some
extent. Following [5], the QuaRot [6] scheme also uses randomized Hadamard transform prior to quantization,
followed by 4-bit scalar quantization of each entry in both rotated matrices. Our implementation in Section VI
quantizes the entries of the rotated matrices using nested-lattice codes, which come much closer to the optimal
rate-distortion tradeoff than scalar quantizers, with essentially the same complexity (provided that the base lattice
has an efficient nearest-neighbor decoder, as is the case for essentially all “good” lattices in dimensions 2, 3, 4 and
8).

To the best of our knowledge, there was very little work on distributed compression for inner product/matrix
multiplication in the information theory literature. Recently, Malak [29] studied the problem of lossless distributed
compression of binary random matrices for computing their product, and derived non-trivial bounds under stringent
assumptions on the joint distribution. Some prior work considered the problem of distributed compression of random
vectors with the goal of approximately computing a linear function of those vectors [30], [31]. In those works,
the goal was to estimate, say, the difference between the two vectors in Rn, which is itself a vector in Rn. While
the inner product of these vectors, which is a scalar in R, can be computed from their difference (assuming their
individual norms were encoded in high resolution), it seems, a-priory, that distributed compression for inner-product
computation is an easier task. Our results show that this is, in fact, hardly the case. Another line of related work
in the information theory literature, is that of Ingber et al. [32] that considered the fundamental limits of lossy
compression of a database in order to support approximate nearest neighbor search (see also [33] for a practical
implementation). We note in passing that much recent work focused on coding for speeding up distributed matrix
multiplication by introducing redundancy for mitigating the effect of “slow workers” (stragglers), see, e.g., [34].
This line of work is not directly related to approximate matrix multiplication via compression, studied in this paper.

Finally, one may wonder if approximating matrix product in mean squared error (MSE) metric is the right
distortion metric. Indeed, it was shown in [35] that if the high-dimensional vectors to be compressed are probability
distributions and the metric is KL divergence (reasonable assumptions for attention matrices in LLMs), the optimal
quantization algorithms become quite different from the MSE ones. We leave these extensions for future work.

To summarize, the main innovations of this work with respect to prior work are:
a. Our work provides, for the first time, the fundamental limits of quantization for matrix multiplication. We derive a

non-asymptotic lower bound on the error of any quantization algorithm for the case of Gaussian iid matrices, and
develop a “robust” quantization algorithm (that makes no assumptions on the matrices A, B) that asymptotically
attains it. This gives a useful benchmark for evaluating the performance of any robust quantization algorithm.

8

b. Our lower and upper bounds give a theoretic justification for the widely used idea of applying the same random
rotation to both matrices A and B prior to quantization. In particular, the schemes used in the proofs of Theorem 1
and Theorem 3 are based on random rotation followed by quantizers based on “good” high-dimensional nested
lattices. The scheme from the Proof of Theorem 3 improves upon the QuaRot scheme [6] by employing “good”
lattices instead of Zn (scalar quantizer), which leads to a multiplicative reduction by of factor O(log n) in the
resulting distortion, see (13).

c. Motivated by the large gap between the performance of the scheme from Theorem 3 and that of a similar scheme
that uses scalar quantizers, in Section VI we describe a family of nested lattice quantization schemes that on
the one hand admit very fast implementation, and on the other hand attain performance that comes close to the
that of Theorem 3 (which is nearly optimal for Gaussian iid matrices). Our scheme is based on using a lattice
Λ in relatively small dimension for both quantization and “shaping”.3 We describe quantizers with a very fast
implementation for any R > 0, which only require access to a fast nearest neighbor decoder for the lattice Λ (for
many important lattices, e.g., the Dn and An family, E8, etc., fast nearest neighbor decoders are known). While
for weights-only quantization the work [5] already proposed using random rotation followed by quantization
using the E8 lattice, the shaping mechanism used in [5] is based on using a lookup table, which limits the R it
can work with,4 and is also less efficient on a GPU. Our proposed shaping mechanism is much faster, regardless
of the quantization rate R. Furthermore, we propose in Section VI a mechanism for controlling overload, which
plays an important role in coming close to the performance of optimal high-dimensional nested lattices using
simple low-dimensional lattices instead.

D. Paper organization

We begin our study with the special case where a = b = 1, so that matrix multiplication becomes an inner
product. The reason is twofold: First, it is easier to gain intuition for this problem, and all techniques for proving
converse (impossibility) results for the inner product case, easily extend to the matrix multiplication case. The second
reason is that our achievability results are based on compression of each column of A separately and compression
of each column of B separately, and estimating each inner product forming Cij = (A⊤B)i,j = a⊤i bj separately. In
Section II we formally define the compression for inner product computation problem, identify the structure of the
optimal decoder, and give simple expressions on the attained distortion as a function of the encoders f1 and f2, as
well as a simple lower bound on the distortion in terms of the “standard” distortion-rate function. In Section III
we restrict attention to the symmetric case where the two vectors have the same distribution, and both encoders
have the same rate. We prove lower and upper bounds on the smallest attainable distortion in this case, which
coincide in the Gaussian case. In Section IV we generalize the inner-product results for matrix multiplication A⊤B
of A ∈ Rn×a and B ∈ Rn×b, for general a and b. Building on the bounds developed for the inner-product case of
a = b = 1, we prove lower and upper bound on the smallest expected squared Frobenius norm of the error. In the
special case where all entries in both matrices are iid Gaussian, the lower bound results in Theorem 2. In Section V
we develop a quantization scheme, based on randomly rotating both A and B by the same rotation matrix, and
then using nested-lattice quantizers for separately quantizing each column of the rotated matrices, for qunatization
of arbitrary matrices A ∈ Rn×a and B ∈ Rn×b. The expected squared Frobenius norm of the approximation
error attained by this scheme is upper bounded in Theorem 1. The upper bound depends on A and B only through
∥A∥F , ∥B∥F , ∥A⊤B∥F , and meets the lower bound from Theorem 2 for the case where A and B have Gaussian iid
entries. The estimation of Â⊤B formed by the scheme used in the proof of Theorem 1 is biased. We also introduce
in Section V a very simple variation of the same scheme, that results in an unbiased estimator for Â⊤B, whose
expected squared Frobenius norm error is upper bounded in Theorem 3, in terms of only ∥A∥F , ∥B∥F . Finally,
in Section VI we introduce a practical implementation of the quantization scheme from Theorem 3 for matrix
multiplication of arbitrary matrices. In these scheme, we describe several compromises in the choice of lattices
used for quantization, as well as in the rotation matrix used for rotating both A and B. With these compromises
the quantization scheme and the decoder become extremely simple and fast. Some numerical evidence show that,
nevertheless, the resulting approximation error is quite close to the lower bound from Theorem 2.

3A lattice has an infinite number of points. In order to use lattice quantizers as a mean of converting vectors in Rd to dR bits, one must
choose a set of 2dR points of the lattice which are the codewords in the quantization codebook. The operation of selecting those points is called
shaping.

4For large R, [5] proposes to reuse the codebook for small R via a successive refinement procedure. This adds further delays to the quantization
process.

9

E. Notation

For x > 0 we denote by log(x) the logarithm of x taken to base 2, and by ln(x) the natural logarithm. We denote
the Euclidean (ℓ2) norm of a vector x ∈ Rn by ∥x∥ =

√∑n
i=1 x

2
i and its ℓ1 norm by ∥x∥1 =

∑n
i=1 |xi|. For a matrix

A ∈ Rn×m the Frobenius norm is ∥A∥F =
√∑n

i=1

∑m
j=1 A

2
ij =

√
trace(A⊤A). The multiset of eigenvalues of a

square matrix A ∈ Rn×n is denote by eig(A) = (λ1, . . . , λn). For y > 1 we denote [y] = {1, . . . , ⌊y⌋}.

II. COMPRESSION FOR INNER-PRODUCT COMPUTATION: GENERAL PROBLEM SETUP AND SIMPLE BOUNDS

Let P and Q be distributions on R with unit variance, and let U ∼ P⊗n and V ∼ Q⊗n be statistically independent.
We consider the problem of quantizing U and V in order to compute their inner product U⊤V . In particular, an
(n,R1, R2, D) code consists of mappings

f1 : Rn → [2nR1] (17)

f2 : Rn → [2nR2] (18)

g : [2nR1]× [2nR2]→ R, (19)

with

D = DIP =
1

n
E
(
U⊤V − g(f1(U), f2(V))

)2
. (20)

We define

DIP,∗
n (R1, R2) = DIP,∗

n (R1, R2, P,Q) = inf {D : ∃(n,R1, R2, D)− code} . (21)

We further define the asymptotic function

DIP(R1, R2) = DIP(R1, R2, P,Q) = lim sup
n→∞

D∗
n(R1, R2). (22)

Note that the assumption that P and Q have unit variance is without loss of generality. To see this, assume that
Ũ ∼ P̃⊗n and Ṽ ∼ Q̃⊗n, such that Var[Ũ] = σ2

1 and Var[Ṽ] = σ2
2 , and we would like to quantize Ũ and Ṽ in

order to estimate Ũ⊤Ṽ . To that end we may define the unit-variance random variables U = Ũ
σ1

and V = Ṽ
σ2

with
corresponding distributions P and Q, compress them using f1(U) and f2(V), and estimate the inner product as

̂̃U⊤Ṽ = σ1σ2 · g(f1(U), f2(V)), (23)

where f1, f2, g attain DIP,∗
n (R1, R2) for P and Q. This scheme will achieve

E
(
Ũ⊤Ṽ − ̂̃U⊤Ṽ

)2

= σ2
1σ

2
2 · E

(
U⊤V − g(f1(U), f2(V))

)2
= σ2

1σ
2
2 ·DIP,∗

n (R1, R2). (24)

This must be optimal, since otherwise we could have attained a smaller distortion for P and Q by first scaling U
and V by σ1 and σ2, respectively, feeding them to the better inner product quantization system, and scaling the
obtained inner product estimate by 1

σ1σ2
.

Some of our bounds will rely on the distortion-rate function of a source on R under quadratic distortion. An
(n,R,D) code for a source U ∼ P⊗n consists of an encoder f : Rn → [2nR] and a decoder g : [2nR]→ Rn with
D = 1

nE∥U − g(f(U))∥2. We denote by D∗
n(R) = D∗

n(R,P) the smallest distortion attained by any (n,R,D)
code, and we denote the distortion-rate function by [8]

DP (R) = lim
n→∞

D∗
n(R,P) = min

PY ;U :I(U ;Y)≤R
E(U − Y)2. (25)

It is also well-know [8], that D∗
n(R,P) ≥ DP (R) for any n ≥ 1.

10

A. Optimal Decoder and Error Expressions

In the following, we assume f1 and f2 are fixed. We denote WU = f1(U) and WV = f2(V). Let Û = E[U |WU]
and V̂ = E[V |WV].

Proposition 1: The optimal choice for g is g∗(WU ,WV) = Û⊤V̂ .
Proof. The minimum mean squared estimator (MMSE) of a random variable X from another random variable Y
is X̂ = E[X|Y]. Thus,

g∗(WU ,WV) = E[U⊤V |WU ,WV] = E[U⊤|WU]E[V |WV] = Û⊤V̂ , (26)

where the second equality follows since (U,WU) ⊥⊥ (V,WV).
Let eU = U − Û and ΣeU = E[(U − Û)(U − Û)⊤]. Similarly, let eV = V − V̂ and ΣeV = E[(V − V̂)(V − V̂)⊤].

Recall that by the orthogonality principle[36, Chapter 4.2], it holds that E[Ûe⊤U] = 0 and E[V̂ e⊤V] = 0.
Proposition 2: For the optimal decoder, we have that

E
(
U⊤V − g∗(WU ,WV)

)2
=

1

n
[trace(ΣeV) + trace(ΣeU)− trace(ΣeUΣeV)] (27)

Proof. We have

DIP = E
(
(Û + eU)

⊤(V̂ + eV)− Û⊤V̂
)2

(28)

= E
(
Û⊤eV + V̂ ⊤eU + e⊤UeV

)2
(29)

= E
(
Û⊤eV

)2
+ E

(
V̂ ⊤eU

)2
+ E

(
e⊤UeV

)2
, (30)

where the last transition is due to the orthogonality principle and the statistical independence of U and V . We have
that

E
(
Û⊤eV

)2
= trace

[
E[Û Û⊤eV e

⊤
V]
]
= trace

[
E[Û Û⊤]ΣeV

]
(31)

Recalling that E[Û Û⊤] = I − ΣeU , again, by the orthogonality principle, we obtain

E
(
Û⊤eV

)2
= trace [(I − ΣeU)ΣeV] = trace(ΣeV)− trace(ΣeV ΣeU), (32)

Similarly,

E
(
V̂ ⊤eU

)2
= trace(ΣeU)− trace(ΣeV ΣeU). (33)

Finally,

E
(
e⊤UeV

)2
= trace

[
E[eUe⊤UeV e⊤V]

]
= trace(ΣeUΣeV). (34)

B. Simple Lower Bounds

We show that computing the inner product with mean squared error (MSE) of nD is necessarily harder than
compressing each of the random vectors U and V with ℓ2 norm of nD. Note that in the inner product quantization
problem we are only interested in a single scalar in R while in the standard problem of quantizing a random vector
we are interested in a vector in Rn. Yet, the former problem is at least as hard as the latter.

Theorem 4: For any n ≥ 1

DIP,∗
n (R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} , (35)

and in particular

DIP(R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} . (36)

11

Proof. From Proposition 2 we have that for any f1 : Rn → [2nR1] and f2 : Rn → [2nR2]

E
(
U⊤V − g∗(WU ,WV)

)2
=

1

n
[trace(ΣeV) + trace(ΣeU)− trace(ΣeUΣeV)] (37)

=
1

n

[
trace(ΣeU) + E(Û⊤eV)

2
]

(38)

≥ 1

n
trace(ΣeU) (39)

≥ D∗
n(R1, P), (40)

where (38) follows from (32), and the last inequality follows since WU is an encoding of U with 2nR1 codewords,
which must incur distortion at least D∗

n(R1, P) by definition. Note that the inequality (39) holds with equality in
the “single-sided” case where only U is quantized while V̂ = V , so that eV = 0. The bound D∗

n(R1, R2, P,Q) ≥
D∗

n(R2, Q) follows similarly. Our statement now follows since D∗
n(R1, P) ≥ DP (R1) and D∗

n(R2, Q) ≥ DQ(R2)
for any n ≥ 1.

III. COMPRESSION FOR INNER-PRODUCT COMPUTATION: THE SYMMETRIC CASE

In this section we assume P = Q, R1 = R2 = R, and define DIP,∗
n (R,P) = D∗

n(R,R, P, P), and DIP,∗(R,P) =
DIP,∗(R,R, P, P). We first develop a simple upper bound based on using the same encoder for both vectors (that
is f = f1 = f2), that time-shares between a “good” encoder for P under quadratic distortion, and a zero-rate
encoder. We then develop a lower bound on the distortion of inner-product compression, which shows that for the
symmetric case, using the same encoder f = f1 = f2 for both U and V is optimal, and depends on the spectrum
of the covariance matrix of eU = U −E[U |f(U)]. We then give some constraints on the error spectrum that can be
attained by a rate R encoder. Using this characterization we obtain a general lower on DIP,∗(R,P) which meets
the upper bound when P is the Gaussian distribution.

A. Upper Bound

Define the function

ϕ(x) = 2x− x2. (41)

and note that x 7→ ϕ(x) is increasing and concave on [0, 1]. We give a time-sharing upper bound on DIP,∗(R,P)
in terms of ϕ(DP (R)).

Theorem 5:

DIP,∗(R,P) ≤ min
0≤α≤1

(1− α) + α · ϕ
(
DP

(
R

α

))
(42)

Proof. We will prove that

DIP,∗
n (R,P) ≤ min

α∈ 1
n{0,1,...,n}

(1− α) + α · ϕ
(
D∗

αn

(
R

α
,P

))
(43)

from which the statement immediately follows. Let α ∈ 1
n {0, 1, . . . , n}, and consider a compressor for P⊗αn under

quadratic distortion: f : Rαn → [2nR = 2nα
R
α] and g : [2nR = 2nα

R
α]→ Rαn, that attains

D =
1

αn
E∥Uαn − Ûαn∥2 =

1

αn
trace(ΣeUαn). (44)

We encode U by applying f on Uαn and do not describe the other coordinates. The resulting covariance error
matrix is therefore block diagonal of the form

ΣeU =

[
ΣeUαn 0

0 I(1−α)n

]
. (45)

Consequently,

trace(ΣeU) = trace(ΣeUαn
) + trace(I(1−α)n) = nαD + n(1− α) (46)

trace(ΣeUΣeU) = trace(ΣeUαn
ΣeUαn

) + trace(I(1−α)n) = ∥ΣeUαn
∥2F + n(1− α). (47)

12

Recall that for a positive semi-definite matrix A ∈ Rm×m it holds that ∥A∥2F ≥ 1
m (trace(A))2. This follows since

the vector λ = eig(A) has non-negative entries, so that trace(A) = ∥λ∥1, and therefore ∥A∥2F = ∥λ∥22 ≥ 1
m∥λ∥

2
1 =

1
m (trace(A))2. Thus,

∥ΣeUαn
∥2F ≥

1

αn
(trace(ΣeUαn

))2 = αnD2, (48)

and, by (47), we have

trace(ΣeUΣeU) ≥ nαD2 + n(1− α). (49)

We use the same encoder also for encoding V , such that ΣeV = ΣeU , and use the optimal decoder g∗ for estimating
U⊤V . Applying Proposition 2, we obtain

DIP =
1

n
[trace(ΣeU) + trace(ΣeV)− trace(ΣeUΣeV)] (50)

=
1

n

[
2 trace(ΣeU)− ∥ΣeU ∥2F

]
(51)

≤ (1− α) + α · (2D −D2) (52)
= (1− α) + αϕ(D). (53)

Taking the compressor f that attains D∗
αn

(
R
α , P

)
, we obtain the claimed result.

B. Lower Bound
Lemma 1: For the symmetric case there is no loss of optimality in taking f1 = f2 = f , and

DIP,∗
n (R,P) =

1

n
inf
f

[
2∥λ(f)∥1 − ∥λ(f)∥22

]
=

1

n
inf
f

n∑
i=1

ϕ (λi(f)) , (54)

where the infimum runs over all encoders f : Rn → [2nR], and

λ(f) = eig
(
ΣefU

)
, (55)

where efU = U − E[U |f(U)], ΣefU
= E[efUe

f,⊤
U].

Proof. By Proposition 2, we have that for any two encoders f1 : Rn → [2nR] and f2 : Rn → [2nR], when the
optimal decoder is used, it holds that

DIP =
1

n

[
trace(Σ

e
f1
U

) + trace(Σ
e
f2
V

)− trace(Σ
e
f1
U

Σ
e
f2
V

)
]

(56)

=
1

n

[
trace(Σ

e
f1
U

) + trace(Σ
e
f2
U

)− trace(Σ
e
f1
U

Σ
e
f2
U

)
]
, (57)

where the last equality follows since P = Q, and therefore U and V have the same distribution. By the Cauchy-
Schwartz inequality,

trace
(
Σ

e
f1
U

Σ
e
f2
U

)
=

n∑
i=1

n∑
j=1

Σ
e
f1
U

(i, j)Σ
e
f2
U

(j, i) (58)

≤

√√√√ n∑
i=1

n∑
j=1

Σ2

e
f1
U

(i, j)

n∑
i=1

n∑
j=1

Σ2

e
f2
U

(j, i) (59)

= ∥Σ
e
f1
U

∥F ∥Σe
f2
U

∥F . (60)

Note that the upper bound above is tight if Σ
e
f1
U

is a scaled version of Σ
e
f2
U

(recall that ΣefU
= Σ⊤

efU
since this is a

covariance matrix), and in particular, this holds if f1 = f2 = f . Recall that for a positive semi-definite symmetric
matrix A ∈ Rn with eigenvalues α = eig(A) = (α1, . . . , αn) it holds that

trace(A) =

n∑
i=1

αi = ∥α∥1 (61)

∥A∥F =

√√√√ n∑
i=1

α2
i = ∥α∥2. (62)

13

Thus, combining (57) and (60), we obtain

DIP ≥ 1

n
[∥λ(f1)∥1 + ∥λ(f2)∥1 − ∥λ(f1)∥2 · ∥λ(f2)∥2] , (63)

with equality if f1 = f2. Set x1 = ∥λ(f1)∥1, x2 = ∥λ(f1)∥2, y1 = ∥λ(f2)∥1 and y2 = ∥λ(f2)∥2. With this notation,
we have

nDIP ≥ x1 + y1 − x2y2 (64)

=
1

2
(2x1 − x2

2) +
1

2
(2y1 − y22) +

1

2
(x2 − y2)

2 (65)

≥ 1

2
(2x1 − x2

2) +
1

2
(2y1 − y22) (66)

≥ min
{
2x1 − x2

2, 2y1 − y22
}

(67)

≥ min
f

[
2∥λ(f)∥1 − ∥λ(f)∥22

]
. (68)

all inequalities are attained with equality if f1 = f2 = f∗, where f∗ is a minimizer of (68).
The following Shannon-lower-bound-type lemma constrains the eigenvalues of an MSE matrix for estimating U

from a 2nR-level quantizer f : Rn → [2nR].
Lemma 2: Assume (without loss of generality) that the distribution P has unit variance. Let f : Rn → [2nR] be

a 2nR-level quantizer, and define λ(f) = (λ1, . . . , λn) ∈ [0, 1]n as in (55). Then

1

n

n∑
i=1

1

2
log

1

λi
≤ R+D(P∥N (0, 1)). (69)

Proof. We may assume without loss of generality that h(P) > −∞, as otherwise D(P∥N (0, 1)) = ∞ and the
statement trivially holds. Let efU = U − E[U |f(U)], ΣefU

= E[efUe
f,⊤
U]. Since the Gaussian distribution maximizes

differential entropy under second moment constraints, we have that

h(U |f(U)) ≤ 1

2
log det

(
(2πe)ΣefU

)
= n · 1

n

n∑
i=1

1

2
log(2πeλi). (70)

Consequently,

nR ≥ I(U ; f(U)) = h(U)− h(U |f(U)) ≥ h(U)− n · 1
n

n∑
i=1

1

2
log(2πeλi) (71)

= h(N⊗n(0, 1))− n · 1
n

n∑
i=1

1

2
log(2πeλi) + h(P⊗n)− h(N⊗n(0, 1)) (72)

= n

(
1

n

n∑
i=1

1

2
log

1

λi
−D(P∥N (0, 1))

)
, (73)

which yields the claimed result.
Theorem 6: Assume (without loss of generality) that the distribution P has unit variance. Then,

DIP,∗(R,P) ≥ Γ (R+D(P∥N (0, 1))) , (74)

where Γ(R) is defined in (1).
Proof. Let f : Rn → [2nR] be a 2nR-level quantizer, and define λ(f) = (λ1, . . . , λn) ∈ [0, 1]n as in (55). Denote
by K = Kf the uniform distribution over (the multiset) λ(f). By Lemma 1, we have that

DIP,∗
n (R,P) = inf

f
Eλ∼Kf

ϕ(λ) = inf
f

Eλ∼Kf
ϕ
(
2−2RN (λ)

)
, (75)

where RN (λ) = 1
2 log

1
λ . Denote Γ1(R) = ϕ(2−2R). In Appendix A we show that

convex envelope of Γ1(R) = Γ(R). (76)

14

It therefore follows that

DIP,∗
n (R,P) = inf

f
Eλ∼Kf

Γ1(RN (λ)) (77)

≥ inf
f

Eλ∼Kf
Γ (RN (λ)) (78)

≥ inf
f

Γ
(
Eλ∼Kf

RN (λ)
)

(79)

≥ Γ (R+D(P∥N (0, 1))) , (80)

where we have used Lemma 2 in the last inequality.

C. The Symmetric Gaussian case

Combining Theorem 5 and Theorem 6, we obtain a complete characterization for the Gaussian case.
Theorem 7:

DIP,∗(R,N (0, 1)) = Γ(R) =

{
1−

(
1− ϕ(2−2R∗

)
)

R
R∗ R < R∗

ϕ(2−2R) R ≥ R∗ . (81)

Proof. The upper bound follows from applying Theorem 5 with α = min{R/R∗, 1}, and recalling that DN (0,1)(R) =
2−2R. The lower bound follows directly from Theorem 6.

IV. COMPRESSION FOR MATRIX MULTIPLICATION

A. Setup

Let A ∈ Rn×a be a matrix whose entries are drawn iid from the distribution P and B ∈ Rn×b be a matrix,
statistically independent of A, whose entries are drawn iid from the distribution Q. We assume both P and Q are
distributions with unit-variance. We consider the problem of quantizing A and B in order to compute their matrix
multiplication A⊤B. In particular, an (n, a, b, R1, R2, D) code consists of mappings

f1 : Rn×a → [2naR1] (82)

f2 : Rn×b → [2nbR2] (83)

g : [2naR1]× [2nbR2]→ Ra×b, (84)

with

D = DMM =
1

n · a · b
E∥A⊤B − g(f1(A), f2(B))∥2F . (85)

We define

DMM,∗
n,a,b (R1, R2) = DMM,∗

n,a,b (R1, R2, P,Q) = inf {D : ∃(n, a, b, R1, R2, D)− code} . (86)

We further define the asymptotic function

DMM
a,b (R1, R2) = DMM

a,b (R1, R2, P,Q) = lim sup
n→∞

D∗
n,a,b(R1, R2), (87)

B. Basic Properties and Bounds

Denote WA = f1(A) and WB = f2(B) and further denote Â = E[A|WA] and B̂ = E[B|WB]. Define ΣA =
E[(A− Â)(A− Â)⊤] ∈ Rn×n and M̄A = E[ÂÂ⊤] ∈ Rn×n. Similarly, ΣB = E[(B − B̂)(B − B̂)⊤] ∈ Rn×n and
M̄B = E[B̂B̂⊤] ∈ Rn×n. As in the scalar case, we still have the identities:

ΣA + M̄A = aIn (88)
ΣB + M̄B = bIn. (89)

The next theorem generalizes the basic bounds we derived above for the inner product case, to the matrix multi-
plication case. The proofs are similar to the statements above, and are therefore omitted.

Theorem 8: The following hold:

15

1) For fixed f1, f2, the optimal choice for g is g∗(WA,WB) = Â⊤B̂, and the distortion is given by

DMM =
1

n · a · b
[
trace(ΣAM̄B) + trace(ΣBM̄A) + trace(ΣAΣB)

]
=

1

n

[
1

a
trace(ΣA) +

1

b
trace(ΣB)−

1

a · b
trace(ΣAΣB)

]
.

2) The oracle lower bound (taking B̂ = B or Â = A) gives

DMM ≥ max

{
1

n · a
traceΣA,

1

n · b
traceΣB

}
,

and consequently for any n ≥ 1

DMM,∗
n,a,b (R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} ,

and in particular

DMM(R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} .

3) For the symmetric case, where R1 = R2 = R and P = Q, we have

DMM
a,b (R,P) ≤ min

0≤α≤1
(1− α) + α · ϕ

(
DP

(
R

α

))
This is asymptotically attained by quantizing only the first αn coordinates of each column of A and each
column of B

4) For the symmetric case, where R1 = R2 = R and P = Q, for any n ≥ 1 we have

DMM,∗
n,a,b (R,P) ≥ 1

n
min

{
inf
fa

[
2∥λ(fa)∥1 − ∥λ(fa)∥22

]
, inf
fb

[
2∥λ(fb)∥1 − ∥λ(fb)∥22

]}
=

1

n
min

{
inf
fa

n∑
i=1

ϕ (λi(fa)) , inf
fb

n∑
i=1

ϕ (λi(fb))

}
, (90)

where the infima runs over all encoders fa : Rn×a → [2naR], fb : Rn×b → [2nbR], and

λ(fa) = eig

(
1

a
ΣefaA

)
, λ(fb) = eig

(
1

b
Σ

e
fb
B

)
(91)

where efaA = A− E[A|fa(A)], ΣefaA
= E[efaA efa,⊤A], and efbB = B − E[B|fb(B)], Σ

e
fb
B

= E[efbB efb,⊤B].

C. Maximum Entropy Matrices

The fact that the Gaussian distribution maximizes the differential entropy of a vector, under second moment
constraints, played a pivotal role in the derivation of our bounds for inner product quantization. For matrix
multiplication quantization, the following lemma will play a similar role.

Lemma 3: Let M ∈ Rn×a be a random matrix with E[M] = 0, and E[MM⊤] = Σ. Then

h(M) ≥ a

2
log det

(
2πe

1

a
Σ

)
= a ·

n∑
i=1

1

2
log(2πeλi), (92)

where λ = eig
(
1
aΣ
)
, and this is attained with equality if the columns of M are independent N

(
0, 1

aΣ
)

random
vectors.
Proof. Write M = [m1|m2| · · · |ma], where m1, . . . ,ma are zero-mean random vectors in Rn. Denote the marginal
distribution of mi by Pi. Let Σi = E[mim

⊤
i], and recall that

Σ = E[MM⊤] =

a∑
i=1

E[mim
⊤
i] =

a∑
i=1

Σi. (93)

We further have that

h(M) = h(m1, . . . ,ma) ≤
a∑

i=1

h(mi) ≤ a · h
(
1

a

∑
Pi

)
, (94)

16

where we have used sub-additivity and concavity of differential entropy in the inequalities above. Noting that the
covariance matrix corresponding to the distribution 1

a

∑a
i=1 Pi is 1

a

∑a
i=1 Σi =

1
aΣ, we have

h(M) ≤ a · h
(
N
(
0,

1

a
Σ

))
=

a

2
log det

(
2πe

1

a
Σ

)
. (95)

All inequalities are attained with equality when mi
iid∼ N

(
0, 1

aΣ
)
, for i = 1, . . . , a.

This immediately gives the following generalization of Lemma 2
Lemma 4: Assume (without loss of generality) that the distribution P has unit variance. Let fa : Rn×a → [2naR]

be a 2naR-level quantizer, and define λ(fa) = (λ1, . . . , λn) ∈ [0, 1]n as in (91). Then

1

n

n∑
i=1

1

2
log

1

λi
≤ R+D(P∥N (0, 1)). (96)

Proof. Without loss of generality, we may assume h(P) > −∞, as otherwise D(P∥N (0, 1)) =∞ and the statement
is trivial. Let efaA = A− E[A|fa(A)], ΣefaA

= E[efaA efa,⊤A]. By Lemma 3, we have that

h(A|fa(A)) ≤ a

2
log det

(
(2πe)

1

a
ΣefaA

)
= na · 1

n

n∑
i=1

1

2
log(2πeλi). (97)

Consequently,

naR ≥ I(A; fa(A)) = h(A)− h(A|fa(A)) ≥ h(A)− na · 1
n

n∑
i=1

1

2
log(2πeλi) (98)

= h(N⊗na(0, 1))− na · 1
n

n∑
i=1

1

2
log(2πeλi) + h(P⊗na)− h(N⊗na(0, 1)) (99)

= na

(
1

n

n∑
i=1

1

2
log

1

λi
−D(P∥N (0, 1))

)
, (100)

which yields the claimed result.

D. Fundamental Limits

Using Theorem 8 and Lemma 4, we prove the following result for the symmetric matrix multiplication case.
Theorem 9: Assume (without loss of generality) that the distribution P has unit variance and finite differential

entropy. Then, for any n ≥ 1

DMM,∗
n,a,b (R,P) ≥ Γ (R+D(P∥N (0, 1))) , (101)

where Γ(R) is defined in (1).
Proof. Let fa : Rn×a → [2naR] be a 2naR-level quantizer, and define λ(fa) = (λ1, . . . , λn) ∈ [0, 1]n as in (91).
Denote by K = Kfa the uniform distribution over (the multiset) λ(fa), and RN (λ) = 1

2 log
1
λ , as in the proof of

Theorem 6, we have that

Eλ∼Kfa
ϕ(λ) = Eλ∼Γfa

ϕ
(
2−2RN (λ)

)
. (102)

Recalling from the proof of Theorem 6 that the Γ1(R) = ϕ(2−2R) ≥ Γ(R) and the function R 7→ Γ(R) is convex
and non-increasing, it follows that

Eλ∼Kfa
ϕ
(
2−2RN (λ)

)
≥ Eλ∼Kf

Γ (RN (λ)) (103)

≥ Γ
(
Eλ∼Kf

RN (λ)
)

(104)
≥ Γ (R+D(P∥N (0, 1))) , (105)

where we have used Lemma 4 in the last inequality. Thus,

1

n

n∑
i=1

ϕ(λi(fa)) = Eλ∼Kfa
ϕ (λ) ≥ Γ (R+D(P∥N (0, 1))) . (106)

17

Similarly, for any fb : Rn×b →
[
2nbR

]
we have

1

n

n∑
i=1

ϕ(λi(fb)) = Eλ∼Kfb
ϕ (λ) ≥ Γ (R+D(P∥N (0, 1))) . (107)

Thus, by (90) in Theorem 8, for any n ≥ 1

DMM
n,a,b(R,P) ≥ min

{
min
fa

1

n

n∑
i=1

ϕ(λi(fa)),min
fb

1

n

n∑
i=1

ϕ(λi(fb))

}
(108)

≥ Γ (R+D(P∥N (0, 1))) , (109)

as claimed.
Proof of Theorem 2. Part 1 follows immediately from Theorem 9. Part 2 follows from part 2 of Theorem 8, and
recalling that DN (0,1)(R) = 2−2R.

E. The Symmetric Gaussian case

Combining Theorem 8 and Theorem 9, we obtain a complete characterization for the Gaussian case.
Theorem 10:

DMM
a,b (R,N (0, 1)) = Γ(R). (110)

Proof. The upper bound follows applying Part 3 of Theorem 8 with α = min{R/R∗, 1}, and recalling that
DN (0,1)(R) = 2−2R. The lower bound follows directly from Theorem 9.

V. LATTICE QUANTIZATION SCHEME FOR MATRIX MULTIPLICATION OF ARBITRARY MATRICES

Our theoretical analysis in Sections II -IV assumed the entries in the vectors/matrices to be multiplied are drawn
iid from some known distribution. In this section, we drop this assumption, and, building on the observations from
the analysis above, develop a robust scheme for compression for matrix multiplication. Our scheme is designed
to attain the optimal distortion in the case where A and B have iid Gaussian entries, but the error it attains for
arbitrary matrices can also be upper bounded.

We first develop encoders f1, f2 : Rn → [2nR] and a decoder g : [2nR] × [2nR] → R for estimating the inner
product of U, V ∈

√
nSn−1 where Sn−1 = {x ∈ Rn : ∥x∥ = 1} is the unit sphere. We then show how these

encoders and decoder can be leveraged for compression for matrix multiplication. Let On(R) be the orthogonal
group, consisting of all orthonormal matrices in Rn×n. It will be useful to analyze the performance of f1, f2, g
with respect to the following distribution on U, V .

Definition 1 (ρ-correlated spherically uniform random vectors): Let S = [S1|S2| · · · |Sn] ∼ Uniform(On(R)) be
a random matrix uniformly distributed over the group of orthogonal matrices in Rn×n (that is, S is drawn from
the Haar measure on On(R)). We say that the random vectors U ∈ Rn and V ∈ Rn are ρ-correlated spherically
uniform random vectors if U =

√
nS1, Z =

√
nS2 and

V = ρU +
√
1− ρ2Z. (111)

Theorem 11: For any ε > 0 and sufficiently large n

1) There exist encoders f1, f2 : Rn → [2nR] and a decoder g : [2nR] × [2nR] → R, such that if U, V are
ρ-correlated spherically uniform

E(U⊤V − g(f1(U), f2(V))2 < n(Γ(R)− Γ2(R) + ε) + ρ2n2(Γ2(R) + ε), (112)

for every 0 ≤ ρ ≤ 1, where Γ(R) is defined in (1).
2) There exists an encoder f : Rn → [2nR] and a decoder g : [2nR]×Rn → R, such that if U, V are ρ-correlated

spherically uniform

E(U⊤V − g(f(U), V))2 < n(2−2R − 2−4R + ε) + ρ2n2(2−4R + ε), (113)

for every 0 ≤ ρ ≤ 1.
The proof of Theorem 11 is based on the nested lattice coding scheme described in Subsection V-A1, and its

performance analysis in Subsection V-A2 and Subsection V-B. A simple variation of the scheme described in

18

Subsection V-A1, with essentially the same (though much simplified) performance analysis gives the following
result.

Theorem 12: For any ε > 0 and sufficiently large n

1) There exist encoders f1, f2 : Rn → [2nR] and a decoder g : [2nR] × [2nR] → R, such that if U, V are
ρ-correlated spherically uniform

E(U⊤V − g(f1(U), f2(V))2 < n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
(114)

for every 0 ≤ ρ ≤ 1.
2) There exists an encoder f : Rn → [2nR] and a decoder g : [2nR]×Rn → R, such that if U, V are ρ-correlated

spherically uniform

E(U⊤V − g(f(U), V))2 < n

(
1

22R − 1
+ ε

)
(115)

for every 0 ≤ ρ ≤ 1.
With these two theorems, can now easily prove Theorem 1 and Theorem 3.

Proof of Theorem 1 and of Theorem 3. We only prove part 1 of the two theorems. The proofs for part 2 are
nearly identical, and we highlight the required modifications in the end of the proof.

Let f1, f2, g be the encoders and decoder from either Theorem 11 or Theorem 12. Based on those f1, f2, g, we
propose the following rate-R quantization scheme for quantization of matrices A ∈ Rn×a and B ∈ Rn×b in order
to estimate C = A⊤B:

1) Quantize the numbers ∥a1∥, . . . , ∥aa∥ (respectively ∥b1∥, . . . , ∥bb∥) in very high resolution so that we can can
ignore their quantization error in the analysis that follows. In particular, we assume the quantized values satisfy
∥̂ai∥ ∈ (1± n−3)∥ai∥, ∥̂bj∥ ∈ (1± n−3)∥bj∥ for all i = 1, . . . , a, j = 1, . . . , b. Those are just a (respectively
b) numbers, so the cost of this description is negligible next to the naR (respectively, nbR) bits budget;5

2) Draw S ∼ Uniform(On(R)) at both encoders (using common randomness), and compute Ã = [ã1| · · · |ãa] =
SA, and B̃ = [b̃1| · · · |b̃b] = SB;

3) Let

Ui =
√
n

ãi
∥ai∥

=
√
nS

ai
∥ai∥

, i = 1, . . . , a (116)

Vj =
√
n

b̃j
∥bi∥

=
√
nS

bj
∥bj∥

, j = 1, . . . , b. (117)

Apply f1 : Rn → [2nR] on Ui, for i = 1, . . . , a, and f2 : Rn → [2nR] on Vj , for j = 1, . . . , b.
4) Use g : [2nR]× [2nR]→ R, to estimate each entry of C = A⊤B as6

Ĉij =
∥ai∥ ∥bj∥

n
g(f1(Ui), f2(Vj)), i = 1, . . . , a, j = 1, . . . , b. (118)

5Let us describe a quantizer for ∥ai∥ that uses O(logn) bits and produces a reconstruction ∥̂ai∥ ∈ (1 ± n−3)∥ai∥. Note that if A has
“bounded entries”, then ∥ai∥ ∈ {0} ∪ [2−2000,

√
n22000]. To quantize it with multiplicative error at most δ = n−3 we construct a grid of

m+ 1 points: {0, 2−2000, (1 + δ)2−2000, (1 + δ)2 · 2−2000, . . . , (1 + δ)m · 2−2000}, where

logm = log

(
4000 +

1

2
logn

)
− log log(1 + δ) = O(logn)

and quantize ∥ai∥ to the nearest point in the grid (recall that 1
1+δ

≥ 1 − δ). Since logm = o(n) for any finite δ, the cost of describing
∥a1∥, . . . , ∥aa∥ is indeed negligible, and same for ∥b1∥, . . . , ∥bb∥.

6Strictly speaking, we only have access to the quantized versions ∥̂ai∥ ∈ (1± n−3)∥ai∥ and ∥̂bj∥ ∈ (1± n−3)∥bj∥. Thus,

Ĉij =
∥̂ai∥ ∥̂bj∥

n
g(f1(Ui), f2(Vj)) =

∥ai∥ ∥bj∥
n

g(f1(Ui), f2(Vj))±
∥ai∥ ∥bj∥

n

3g(f1(Ui), f2(Vj))

n3
.

Since |U⊤
i Vj | ≤ n, we can assume without loss of generality that |g(f1(Ui), f2(Vj))| ≤ n and consequently

Ĉij =
∥̂ai∥ ∥̂bj∥

n
g(f1(Ui), f2(Vj)) =

∥ai∥ ∥bj∥
n

(
g(f1(Ui), f2(Vj)) +O(n−2

)
,

so that the O(n−2) can be ignored without effecting our result.

19

To analyze the mean squared error E(Cij − Ĉi,j)
2, first note that

Cij = a⊤i bj = a⊤i S
⊤Sbj = ã⊤i b̃j =

∥ai∥ ∥bj∥
n

U⊤
i Vj . (119)

Let ρij =
a⊤
i bj

∥ai∥ ∥bj∥ . We claim that Ui, Vj are ρij-correlated spherically uniform random vectors. To see this, note
that due to the random rotation matrix S, we may assume without loss of generality that

ai
∥ai∥

= [1|0|0| · · · |0]⊤, (120)

bj
∥bj∥

= [ρij |
√

1− ρ2ij |0| · · · |0]
⊤, (121)

and this assumption will have no affect on the joint distribution of Ui, Vj . Writing S = [S1|S2| · · · |Sn], we therefore
have that Ui =

√
nS1 and Vj = ρijUi +

√
1− ρ2ijZ, with Z =

√
nS2. Thus, if f1, f2, g are the encoders and

decoder from Theorem 11, we therefore have that

E(U⊤
i Vj − g(f1(Ui), f2(Vj)))

2 < n(Γ(R)− Γ2(R) + ε) + ρ2ijn
2(Γ2(R) + ε). (122)

Consequently,

E(Cij − Ĉi,j)
2 = E

(
∥ai∥ ∥bj∥

n

(
U⊤
i Vj − g(f1(Ui), f2(Vj))

))2

<
∥ai∥2 ∥bj∥2

n
(Γ(R)− Γ2(R) + ε) + C2

ij(Γ
2(R) + ε). (123)

The proof of Theorem 1 is complete, by noting that

1

n

∑
i,j

∥ai∥2∥bj∥2 =
1

n

a∑
i=1

∥ai∥2
b∑

j=1

∥bj∥2 =
∥A∥2F ∥B∥2F

n
,∑

i,j

C2
ij = ∥C∥2F . (124)

If f1, f2, g are the encoders and decoder from Theorem 12, we have that

E(U⊤
i Vj − g(f1(Ui), f2(Vj)))

2 < n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
, (125)

and consequently,

E(Cij − Ĉi,j)
2 = E

(
∥ai∥ ∥bj∥

n

(
U⊤
i Vj − g(f1(Ui), f2(Vj))

))2

<
∥ai∥2 ∥bj∥2

n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
, (126)

which completes the proof of Theorem 3.
The proofs for part 2 are identical with f(Ui) = f1(Ui) and with f2(Vj) = Vj (which is possible, since the

decoder has access to Vj).
Next we prove Theorem 11. We first consider the case of R ≥ R∗ and provide the details of the coding

scheme, that is specify the encoders f1, f2 and the decoder g in Subsection V-A1, and analyze its performance
in Subsection V-A2. In Subsection V-A3 we treat the case of R < R∗, where time-sharing is needed. The one
sided-quantization case, where only U is quantized and the decoder has access to V is handled in Subsection V-B.
The proof of Theorem 12 is given in Subsection V-C. It uses the same scheme described in Subsection V-A1 with
the only difference being that the parameter α from the definition of the coding scheme is chosen as α = 1, rather
than α =

√
1−D as in the proof of 11. The analysis is exactly the same as in Subsection V-A2, except for the

different choice of α, and time-sharing is not used at all.

20

A. Proof of Theorem 11, Part 1

1) Dithered Nested Lattice Quantization for Inner Product: It will be convenient to denote the dimension by d
rather than n. Thus, we assume in this and in the next subsection that that U and V are ρ-correlated spherically
uniform random vectors in Rd rather than in Rn. The reason is that we will later use time-sharing, and describe
only the first d ≤ n coordinates of U and V using the scheme below.

Let Λc ⊂ Λf be a pair of nested lattices in Rd. Assume that |Λf/Λc| = 2dR. See [37] for basic lattice definitions.
Denote by Vc the Voronoi region of Λc and by Vf the Voronoi region of Λf . Let Z̃1, Z̃2 ∼ Uniform(Vf) be
statistically independent dither vectors. Let 0 < D < 1, and assume that

σ2(Λf) =
1

d
E∥Z̃1∥2 = D. (127)

This is without loss of generality, as we can always scale both lattices Λc ⊂ Λf by the same factor β > 0, so that
the lattice Λc will satisfy this constraint. We denote the nearest neighbor quantizer with respect to the lattice Λf ,
applied on x ∈ Rd, as

QΛf
(x) = argmin

λ∈Λf

∥x− λ∥, (128)

where ties are broken arbitrarily, but in systematic manner. The modulo operation with respect to the lattice Λf , is
defined in this paper as

[x] mod Λf = x−QΛf
(x). (129)

Note that [x] mod Λf ∈ Vf . The operations QΛc(x) and [x] mod Λc are defined similarly.
Let

α =
√
1−D. (130)

Our encoders f1, f2 : Rd → [2dR] compute

Ũ =
[
QΛf

(
αU + Z̃1

)]
mod Λc (131)

Ṽ =
[
QΛf

(
αV + Z̃2

)]
mod Λc, (132)

and each of them maps the result to dR bits (which is possible since |Λf/Λc| = 2dR).
The decoder g(f1(U), f2(V)) computes

Û = α
([

Ũ − Z̃1

]
mod Λc

)
(133)

V̂ = α
([

Ṽ − Z̃2

]
mod Λc

)
, (134)

and estimates the inner product as Û⊤V̂ .

2) Analysis: We now analyze the performance of this scheme. First, note that[
Ũ − Z̃1

]
mod Λc =

[[
QΛf

(
αU + Z̃1

)]
mod Λc − Z̃1

]
mod Λc

=
[
QΛf

(
αU + Z̃1

)
− Z̃1

]
mod Λc

=
[
αU +

(
QΛf

(
αU + Z̃1

)
− (αU + Z̃1)

)]
mod Λc

= [αU + Z1] mod Λc, (135)

where

Z1 = QΛf

(
αU + Z̃1

)
− (αU + Z̃1) (136)

is uniform over V1 and statistically independent of U (and everything else), by the Crypto Lemma [37], [38]. By
the same analysis, we obtain [

Ṽ − Z̃2

]
mod Λc = [αV + Z2] mod Λc (137)

21

where Z2 ∼ Uniform(Vf) is statistically independent of V (and everything else). For the remainder of the analysis
we will make the following assumption.

Assumption 1: It holds that

[αU + Z1] mod Λc = αU + Z1 ⇐⇒ αU + Z1 ∈ Vc, (138)
[αV + Z2] mod Λc = αV + Z2 ⇐⇒ αV + Z2 ∈ Vc. (139)

We discuss the conditions under which this assumption holds with high probability in the sequel.
Under Assumption 1, we have

Û = α(αU + Z1), eU = U − Û = (1− α2)U − αZ1,

V̂ = α(αV + Z2), eV = V − V̂ = (1− α2)V − αZ2. (140)

Thus, the error in estimating the inner product is

e = U⊤V − Û⊤V̂ = (Û + eU)
⊤(V̂ + eV)− Û⊤V̂ = Û⊤eV + V̂ ⊤eU + e⊤UeV

= α
[
(αU + Z1)

⊤ ((1− α2)V − αZ2

)]
+ α

[
(αV + Z2)

⊤ ((1− α2)U − αZ1

)]
+
(
(1− α2)U − αZ1

)⊤ (
(1− α2)V − αZ2

)
= α

[
2α(1− α2)U⊤V + (1− α2)(U⊤Z2 + V ⊤Z1)− α2(U⊤Z2 + V ⊤Z1)− 2αZ⊤

1 Z2

]
+ (1− α2)2U⊤V − α(1− α2)(U⊤Z2 + V ⊤Z1) + α2Z⊤

1 Z2

= (1− α2)(1 + α2)U⊤V − α3(U⊤Z2 + V ⊤Z1)− α2Z⊤
1 Z2. (141)

Recalling (111), we obtain

e = (1− α4)
(
ρ∥U∥2 +

√
1− ρ2U⊤Z

)
− α3(U⊤Z2 + ρU⊤Z1 +

√
1− ρ2)Z⊤Z1)− α2Z⊤

1 Z2. (142)

We note that the estimator is biased and

E(e) = (1− α4)ρE∥U∥2 = dρϕ(D), (143)

where in the last equality we have used

(1− α4) = 1− (1−D)2 = 2D(1−D) = ϕ(D). (144)

Let us now compute E(e2). Since U⊤Z = 0, and ∥U∥2 = d with probability 1, and since (U,Z1, Z2) are statistically
independent, and (Z,Z1, Z2) are statistically independent, we have that

E(e2) = (1− α4)2ρ2d2 + α6(dD + ρ2dD + (1− ρ2)dD) + α4dD2 (145)

= d
[
ρ2d(1− α4)2 + α4D(2α2 +D)

]
(146)

= d
[
ρ2d(1− α4)2 + α4D(2−D)

]
(147)

= d
[
ρ2dϕ2(D) + (1− ϕ(D))ϕ(D)

]
(148)

= d
[
(ϕ(D)− ϕ2(D)) + ρ2dϕ2(D)

]
. (149)

Validity of Assumption 1: We now turn to discuss the validity of Assumption 1. To this end, we will need a few
more definitions. Following [9], we say that a sequence (in d) of random vectors X(d) ∈ Rd is semi norm-ergodic
if for any ε > 0 it holds that

lim
d→∞

Pr(∥X(d)∥2 > (1 + ε)E∥X(d)∥2) = 0. (150)

For a lattice Λ ⊂ Rd we define the effective radius reff(Λ) as the radius of an ℓ2 ball whose volume is equal to
covol(Λ) = Vol(V) = |det(G)|, where V is the Voronoi region of Λ and G ∈ Rd×d is a generating matrix for Λ
(that is, Λ = GZd). In particular, reff(Λ) satisfies the equation covol(Λ) = Vol(reff(Λ)B) = Vd · rdeff(Λ), where
B =

{
x ∈ Rd : ∥x∥ ≤ 1

}
is the unit ball, whose volume is Vd = πd/2

Γ(d
2+1)

. We say that a sequence of nested lattice

pairs Λc ⊂ Λf in Rd is “good” if for any ε > 0:

22

1)

lim
d→∞

dσ2(Λf)

r2eff(Λf)
= 1, lim

d→∞

dσ2(Λc)

r2eff(Λc)
= 1 (151)

2) For any semi norm-ergodic sequence of random vectors with 1
dE∥X

(d)∥2 < σ2(Λf) it holds that

lim
d→∞

Pr(X(d) /∈ Λf) = 0, (152)

and for any semi norm-ergodic sequence of random vectors with 1
dE∥Y

(d)∥2 < σ2(Λc) it holds that

lim
d→∞

Pr(Y (d) /∈ Λc) = 0, (153)

By [9, Theorem 2], for any 0 < D < 1 and R > 0, there exists a sequence of “good” nested lattice pairs Λc ⊂ Λf ,
with σ2(Λf) = D and 1

d log |Λf/Λc| = R. Note that the fact that the sequence is “good”, further implies that

σ2(Λc)

σ2(Λf)
→ r2eff(Λc)

r2eff(Λf)
=

covol(Λc)
2/d

covol(Λf)2/d
= |Λf/Λc|2/d = 22R. (154)

The sequence of random vectors U = U (d) has deterministic norm, and is therefore trivially semi norm-ergodic.
For a sequence of “good” nested lattices, it therefore follows by [9, Theorem 3] that αU +Z1 is semi-norm ergodic
as well. Thus, as long as σ2(Λc) >

1
dE∥αU + Z1∥2 = (1 −D) +D = 1, we have that Pr(αU + Z1 /∈ Vc) is as

small as desired (for large enough d). Thus, if R > 1
2 log(1/D), or equivalently D > 2−2R, we can find lattices

Λc ⊂ Λf for which Assumption 1 holds with high probability. Since for R ≥ R∗ and D = 2−2R we have that
ϕ(D) = ϕ(2−2R) = Γ(R), taking d = n, this establishes Theorem 11 for R ≥ R∗.

We note that in the rare cases where Assumption 1 fails to hold, we can scale both lattices Λc ⊂ Λf by some
β > 1, for which Assumption 1 does hold. Such scaling results in increasing D to β2D. Note that the encoders
f1, f2 can easily check whether or not Assumption 1 holds. Reporting to the decoder that such β was used has
negligible effect on the coding rate. Since these cases are so rare, the effect on the expected distortion is also
negligible. We therefore omit these details from the analysis. In Section VI we discuss a practical implementation
of the scheme above, where such modulo-errors cannot be made rare, and the mechanism for increasing β and
reporting it is described in detail.

3) Time Sharing: For the case R < R∗, we need to combine the scheme above with time-sharing. Set κ = R/R∗,
and d = κn. We assume κn is an integer to avoid uninteresting, and insignificant, rounding effects. We use a
sequence of “good” nested lattices Λc ⊂ Λf in Rd with σ2(Λf) = D > 2−2R∗

, such that σ2(Λc) → σ2(Λf) ·
22R/κ > 1. Therefore, for d large enough it is possible to take D as close as desired to 2−2R∗

without violating
Assumption 1. Let M = [d] = {1, . . . , d} and M̄ = [n] \ [d] = {d + 1, . . . , n}. We use the nested lattice code
described above, for UM and VM and denote eM = U⊤

MV ⊤
M− Û⊤

MV̂M. We do not allocate rate for the description
of the remaining coordinates M̄, and simply estimate the inner product U⊤

M̄VM̄ as Û⊤
M̄V̂M̄ = 0. Further denote

eM̄ = U⊤
M̄VM̄ − Û⊤

M̄V̂M̄ = U⊤
M̄VM̄.

Crucially, in the ρ-correlated spherically uniform case on (Rn)2, projection of U and V to d < n coordinates
changes the basic structure of their joint distribution. In particular, denoting the projection of U on the first d
coordinates by U[d], and similarly for Z[d], the variables ∥U[d]∥ and U⊤

[d]Z[d] are no longer deterministic if d < n.
It holds that (using the fact that E(U2

i) = 1)

E∥U[d]∥2 = d. (155)

By symmetry, we also have

E(U⊤
[d]Z[d]) = 0. (156)

Finally, using the fact that E(U4
i) =

3n
n+2 [39], in Appendix B, we prove that

E∥U[d]∥4 =
n

n+ 2
d(d+ 2). (157)

and that

E(U⊤
[d]Z[d])

2 =
n

n+ 2
d · n− d

n− 1
. (158)

23

Using the error expression (142), we have

eM = (1− α4)
(
ρ∥U[d]∥2 +

√
1− ρ2U⊤

[d]Z[d]

)
− α3(U⊤

[d]Z2 + ρU⊤
[d]Z1 +

√
1− ρ2)Z⊤

[d]Z1)− α2Z⊤
1 Z2. (159)

Consequently,

E(e2M) = (1− α4)2
(
ρ2E∥U[d]∥4 + (1− ρ2)E(U⊤

[d]Z[d])
2
)
+ α6 · 2Dd+ α4D2d. (160)

Since n
(n+2)(n−1) ≤

1
n for all n > 1, we have E(U⊤

[d]Z[d])
2 ≤ d(n−d)

n . We also have that E∥U[d]∥4 = d2
(
1 + 2(n−d)

d(n+2)

)
.

Thus, for fixed κ and n large enough, E∥U[d]∥4 < d2(1+ o(n−1)). In the sequel, we neglect the o(n−1) correction
term, as it can be absorbed in the +ε terms in (112). Recalling that d = κn, and substituting in (160), we obtain

E(e2M) ≤ (1− α4)2n
(
ρ2n · κ2 + (1− ρ2)κ(1− κ)

)
+ nκα62D + nκα4D2 (161)

= nκ
(
ρ2ϕ2(D)[nκ− (1− κ)] + ϕ(D)− κϕ2(D)

)
(162)

≤ nκ
(
ρ2nκϕ2(D) + ϕ(D)− κϕ2(D)

)
. (163)

In similar fashion, we can show that

E(e2M̄) ≤ ρ2n2(1− κ)2 + nκ(1− κ). (164)

Finally, we show in Appendix B that

E(eMeM̄) ≤ ϕ(D)nκ(1− κ)
(
ρ2n− 1

)
. (165)

Thus,

E(e2) = E(eM + eM̄)2 = E(e2M) + E(e2M̄) + 2E(eMeM̄) (166)

≤ nκ
(
ρ2nκϕ2(D) + ϕ(D)− κϕ2(D)

)
+ ρ2n2(1− κ)2 + nκ(1− κ) + 2ϕ(D)nκ(1− κ)

(
ρ2n− 1

)
(167)

= n · ρ2n (κϕ(D) + (1− κ))
2
+ n ·

(
(κϕ(D) + (1− κ))− (κϕ(D) + (1− κ))

2
)

(168)

≤ n
(
Γ(R)− Γ2(R) + ε

)
+ ρ2n2(Γ2(R) + ε), (169)

where the last inequality follows since we can take D arbitrarily close to 2−2R∗
without violating Assumption 1.

This establishes (112).

B. Proof of Theorem 11, Part 2

For the second part of Theorem 11 we use f = f1 in order to encode U , where f1 is the encoder introduced in
Section V-A1, with d = n (no time-sharing). We set Û as in (133), and g(f(U), V) = Û⊤V . The analysis proceeds
as in Section V-A2, but with V̂ = V , such that eV = 0. We therefore have that

e = U⊤V − Û⊤V = (U − Û)⊤V = ((1− α2)U − αZ1)
⊤V = (1− α2)U⊤V − αZ⊤

1 V. (170)

Recalling that α =
√
1−D and that U⊤V =

√
nρ, we obtain

e = nρD − αZ⊤
1 V. (171)

Recalling further that Z1 and V are statistically independent, and that E∥Z1∥2 = nD, and E[V V ⊤] = In, we obtain

E(e2) = n2ρ2D2 + α2nD = nD(1−D) + ρ2n2D2. (172)

Choosing D arbitrarily close to 2−2R, which is possible without violating (138) from Assumption 1 for “good’
nested lattice pair Λc ⊂ Λf (by the arguments given in Section V-A2) completes the proof.

24

C. Proof of Theorem 12

For the proof of part 1, we use the scheme described in Subsection V-A1 with d = n (no time-sharing), but with
α = 1 (instead of α =

√
1−D). We take D to be slightly greater than 1

22R−1
(more accurately, we think of D

as a sequence in n, approaching 1
22R−1

from above). By [9, Theorem 2], there exist a sequence of “good” nested
lattices Λc ⊂ Λf with σ2(Λf) = D and R = 1

d log |Λf/Λc|. By (154), for a sequence of “good” nested lattices we
have

σ2(Λc)→ σ2(Λf)2
2R → 1 +D. (173)

Since U + Z1 is semi norm-ergodic with 1
nE∥U + Z1∥2 = 1+D, we have that [U + Z1] mod Λc = U + Z1 with

high probability. Similarly [V +Z2] mod Λc = V +Z2 holds with high probability, and consequently, Assumption 1
holds with high probability. Since here α = 1, the error e as given in (142) has zero mean, and satisfies (145)
E(e2) = n(2D +D2). Recalling that D → 1

22R−1
this gives

E(U⊤V − g(f1(U), f2(V)))2 = E(e2) ≤ n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
, (174)

as claimed.
For the second part of Theorem 12 we still take α = 1 and use f = f1 in order to encode U , where f1 is the

encoder introduced in Section V-A1, with d = n (no time-sharing). We set Û as in (133), and g(f(U), V) = Û⊤V .
We use a sequence of “good” nested lattices with D → 1

22R−1
as above, so that (138) from Assumption 1 holds

with high probability, by the same considerations as above. The analysis proceeds as in Section V-A2, but with
V̂ = V , such that eV = 0. We therefore have that e = Z⊤

1 V and

E(e2) = E∥Z1∥2 = nD ≤ n

(
1

22R − 1
+ ε

)
, (175)

as claimed.

VI. PRACTICAL IMPLEMENTATION OF NESTED LATTICE QUANTIZERS

In the proof of Theorems 11-12 we used a pair of nested lattices Λc ⊂ Λf ⊂ Rd, with |Λf/Λc| = 2dR. Given
such a pair of lattices in Rd, in order to implement the coding scheme described above, we need to implement the
following procedures:

1) QΛf
(x) = argminλf∈Λf

∥x− λf∥
2) QΛc

(x) = argminλc∈Λc
∥x− λc∥

3) Mapping from Λf/Λc to dR bits
4) Mapping from dR bits to the coset representatives Λf ∩ Vc of Λf/Λc

5) Generating a random dither Z ∼ Uniform(VΛf
), where VΛf

is the Voronoi cell of Λf

Self-similar nested lattice codebooks: Let Λ ⊂ Rd be a lattice with generating matrix G ∈ Rd×d, such that
Λ = GZd. Assume that we have access to a procedure that implements the lattice quantizer QΛ(x) efficiently, and
that there is some κ > 0 such that κZd ⊂ Λ. The assumption that Zd is nested in Λ (up to scaling) is not very
important, but also not restrictive, since the majority of lattices for which efficient lattice quantizers are known do
satisfy it.

Using the lattice Λ, we can construct a pair of nested lattices Λc ⊂ Λf ⊂ Rd, with |Λf/Λc| = 2dR, that induce
an efficiently implementable coding scheme. In particular, let β > 0 and set Λf = βΛ, Λc = qΛf = β · qΛ, where
q = 2R is an integer. Algorithm 1 below provides the pseudo code for implementing f1, f2 from Subsection V-A1
with α = 1 for such a nested lattice codebook. Note that the output OverloadError of Algorithm 1 specifies
whether or not Assumption 1 holds, that is, whether or not a modulo error occurred. In order to implement the
decoder g from Subsection V-A1 (again with α = 1), one implements (133) by applying Algorithm 2 on the output
of f1, implements (134) by applying Algorithm 2 on the output of f2, and computes the inner product of the two
vectors. In order to generate the random dithers Z̃1, Z̃2, one applies Algorithm 3.

Choice of the parameter β: Using this scheme, we have that

D = σ2(Λf) = β2σ2(Λ). (176)

25

Algorithm 1 NestedLatticeEncoder

Inputs: vector to be encoded x ∈ Rd′
, Lattice Λ ⊂ Rd′

with generating matrix G ∈ Rd′×d′
, nesting ratio q ∈ N,

dither vector z ∈ VΛ ⊂ Rd′
, scaling factor β > 0

Outputs: Enc(x) ∈ [q]d
′

(can be represented using ⌈d′ log q⌉ bits), OverloadError that indicates if a modulo
error occurred

t← QΛ

(
x
β + z

)
y ← G−1t
Enc(x)← [y] mod q (elementwise modulo q reduction)

% check whether a modulo error occurred:

x̃← t− z
λc = q ·QΛ

(
x̃
q

)
OverloadError = 1 {λc ̸= 0}

Algorithm 2 NestedLatticeDecoder

Inputs: The encoding Enc(x) ∈ [q]d
′

of x ∈ Rd′
, Lattice Λ ⊂ Rd′

with generating matrix G ∈ Rd′×d′
, nesting

ratio q ∈ N, dither vector z ∈ VΛ ⊂ Rd′
, scaling factor β > 0

Outputs: x̂ ∈ Rd′

ỹ ← G · Enc(x)− z

x̂← β
(
ỹ − q ·QΛ

(
ỹ
q

))
Algorithm 3 GenerateRandomDither

Inputs: Lattice Λ ⊂ Rd′
and a number κ > 0 such that κZd′ ⊂ Λ

Outputs: Z ∼ Uniform(VΛ)

U ← Uniform
(
[0, κ)d

′
)

Z ← U −QΛ(U)

Thus, since the base lattice Λ is given, the parameter β controls D. We also have that

σ2(Λc) = q2σ2(Λf) = 22RD. (177)

Assumption 1 is equivalent to U + Z1 ∈ Vc (and similarly, V + Z2 ∈ Vc). If Λ is a high-dimensional lattice
(d≫ 1) that is “good” for quantization and for coding, this happens with high probability provided that 1 +D =
1
dE∥U + Z1∥2 < σ2(Λc) = 22RD, which is equivalent to D > D∗(R) = 1

22R−1
. In practice, we will usually

work with a base lattice Λ whose second moment and coding goodness are sub-optimal. For this reason, we take
D = γD∗(R) = γ

22R−1
, for some γ > 0 (where γ is not necessarily close to 1), which is done by setting

β =

(
γ

22R − 1
· 1

σ2(Λ)

)1/2

. (178)

Avoiding modulo-error with negligible increase in rate: Recall that Algorithm 1 also indicates, through the
variable OverloadError, whether or not a modulo error occurred, that is, whether or not U + Z1 ∈ Vc. Whenever
a modulo error does occur, one can increase the value of γ further to a large enough value, such that a modulo
error does not occur with the new value, and inform the decoder on what value of γ was chosen. In practice,
we may choose a bank of M values sorted in increasing order γ ∈ {γ1, . . . , γM}. The encoder first uses γ1. If
OverloadError = 1 it tries again with γ2, and keeps increasing γ to the next value until OverloadError = 0. If γ1
is chosen such that overload error is already not too common, and the values of γi increase sufficiently fast with i,
say γi = i · γ1, the entropy of the first value of γ that returned OverloadError = 0 will be small. Since we only
have to report this index to the decoder once for d symbols, the effect on the quantization rate is not significant.

26

Next, we develop a heuristic for choosing γ1. Recall the definition of reff(Λ) from Section V-A2, and note that

reff(Λ) =
(

covol(Λ)
Vd

)1/d
. The normalized second moment (NSM) of a lattice Λ is defined as

N(Λ) =
σ2(Λ)

(covol(Λ))2/d
=

σ2(Λ)

V
2/d
d r2eff(Λ)

. (179)

If U+Z1 were Gaussian, the probability that it stays within VΛc
would have been upper bounded by the probability

that it stays within a ball with the same volume, that is, within a ball with radius reff(Λc). Thus, we need r2eff(Λc)
to be greater than E∥U + Z1∥2. This corresponds to

1 <
1
dr

2
eff(Λc)

1
dE∥U + Z1∥2

=
1

d

r2eff(Λc)

σ2(Λc)

σ2(Λc)
1
dE∥U + Z1∥2

=
1

dV
2/d
d N(Λ)

22RD

1 +D
=

1

dV
2/d
d N(Λ)

γ · 22R

22R + γ − 1
≈ γ

dV
2/d
d N(Λ)

,

(180)

where the last approximation assumes that 22R + γ − 1 ≈ 22R. Thus, we will take

γ1 ⪆ dV 2/dN(Λ). (181)

Product lattices/Product quantization: In order to use the self-similar nested lattice scheme described above, we
need a base lattice Λ with an efficient nearest-neighbor decoder/lattice quantizer QΛ(x) and favorable quantization
and coding properties. While it is easy to find (more accurately, to randomly draw) lattices in high-dimensions
that are good for coding and quantization [9], [40], the task of finding such lattices that also admit an efficient
nearest-neighbor decoder is notoriously difficult and is perhaps the holy grail of coding theory for the additive white
Gaussian noise (AWGN) channel. A popular compromise between efficiency and “goodness”, is to use a product
lattice, with a low-dimensional base lattice that is “pretty-good” for coding and quantization [41], [37].

Let d′ be an integer that divides d, and Λ′ ⊂ Rd′
be a lattice in Rd′

. We construct the lattice Λ ∈ Rd as the
product of L = d/d′ copies of Λ′. Namely,

Λ = Λ′ × · · · × Λ′︸ ︷︷ ︸
L times

= Λ′⊗L (182)

The resulting self-similar nested lattices are also the product of L nested lattice pairs

Λc ⊂ Λf = (β1 · qΛ′ ⊂ β1Λ
′)× · · · × (βL · qΛ′ ⊂ βLΛ

′), (183)

where we allow for different choices of β for each product to accommodate for the modulo-error control mechanism

described above, but typically βℓ =
(

γ1

22R−1
· 1
σ2(Λ)

)1/2
since γ1 is already designed such that very few modulo-

errors occur. Algorithm 1, Algorithm 2 and Algorithm 3 tensorize, and should be applied separately for each
ℓ = 1, . . . , L using the base lattice Λ′ ⊂ Rd′

with generating matrix G′ ∈ Rd′×d′
. We also have that

σ2(Λ) = σ2(Λ′) · 1
L

L∑
ℓ=1

β2
ℓ . (184)

Some lattices in small dimensions have excellent quantization and coding properties, as well as efficient nearest
neighbor decoding algorithms. In particular, A3

∼= D3 has the highest packing density among all lattices in R3 [42],
A∗

3 has the smallest NSM among all lattices in R3 [42] (only slightly smaller than that of A3), D4 has the highest
packing density among all lattices in R4 and lowest known NSM among all lattices in R4 [42], [43], and E8 has
the highest packing density (even among non-lattice packings) [44] and the smallest known NSM among all lattices
in R8 [42], [43]. All four lattices listed above, as well as many others from the An, Dn and En families, admit a
very fast lattice decoding algorithm [45]. Similarly, among all lattices in R24, the Leech lattice Λ24, is the the best
known quantizer [43], has the optimal packing density [46] (this is true even among all non-lattice packings [47]),
and admits a pretty fast nearest neighbor decoding (or approximate nearest neighbor decoding) algorithms [48],
[49], [50]. In addition, the second moment of all these lattices (and others) is calculated in [51] and reported also
in [43, Table I]. Any one of those lattices is a good candidate for the base lattice Λ′. Another important advantage of
these lattices is that they are all subsets of Zn up to scaling. Thus, when these lattices are used for quantization for
matrix multiplication, and dithering is not applied, we can use integer multipliers (e.g., int8 tensor core in a GPU),
rather than floating point multipliers, for multiplying the quantized matrices. The lattices of higher dimensions, and

27

in particular the Leech lattice, may yield better rate-distortion tradeoff than the lower-dimensional ones, but there
are advantages to using lower-dimensional lattices in terms of efficiency. One of those is described next.

Lookup tables: Note that we decode Ûℓ ∈ Rd′
and V̂ℓ ∈ Rd′

just to compute their inner product Û⊤
ℓ V̂ℓ. If we

use the same dither vectors Z̃1, Z̃2 ∈ VΛ′ for all ℓ = 1, . . . , L, and the same value of β, namely, βU
ℓ = βV

ℓ = β
for all ℓ = 1, . . . , L, there are only qd

′
values of Û⊤

ℓ we can get, and only qd
′

values of V̂ ⊤
ℓ we can get. Those do

not depend on ℓ. Thus, we can pre-compute all q2d
′

possible values of Û ′⊤
ℓ V̂

′
ℓ and store them in a lookup table

(LUT). Then, instead of applying the decoder twice and computing the inner product, we simply fetch the result
of the inner product from the LUT. If βU

ℓ ̸= β or βV
ℓ ̸= β, we simply multiply the value fetched from the LUT by

βU
ℓ

β ·
βV
ℓ

β . On some processors, using LUTs significantly speedup the decoding process, as it completely bypasses all
lattice decoding operations, as well as all inner products. For approximate matrix multiplication A⊤B of A ∈ Rn×a

and B ∈ Rn×b using the product nested lattice quantization scheme above, we need to perform a · b · (n/d′) such
operations, whereas the encoding only involves a(n/d′) + b(n/d′) lattice encoding operations. Thus, decoding is
the computationally heavy procedure, and speeding it up will result in significant speedup of the total approximate
matrix multiplication procedure. Using LUTs is therefore often highly advantageous. However, in order to have a
very fast access time to the LUT, we would like it to “fit” in the highest levels of the cache, ideally in the L1 cache.
This level has small capacity, which restricts the values of q2d

′
= 22Rd′

. Thus, we must keep Rd′ small. Taking
small R will typically not yield satisfactory resolution, so if LUTs are used, we are limited to using lattices Λ′ of
small dimensions. We note that for GPUs the LUT approach may not be attractive since the tensor core computes
matrix multiplications extremely fast, while LUT probing is less efficient on this hardware. On CPUs on the other
hand, the LUT approach can yield significant speed-up.

Hadamard transform: In Section V, (116-117) we proposed to multiply each column vector in A as well as
each column vector in B, by a random projection matrix S drawn from the Haar distribution on On(R). In general,
the matrix S drawn from this distribution will have no structure, and calculating SA (respectively SB) will require
O(an2) (respectively, O(bn2)) real-valued multiplication and summation operations. To significantly reduce the
computational burden of this step, it was proposed in [5] (see also [6]) to restrict S to a certain class of orthogonal
projection matrices: The randomized Hadamard transform. Here, we also follow this approach. In particular, we
draw a vector T ∼ Uniform({−1, 1}n), and set K = diag(T), that is, K is a diagonal matrix with Ki,i = Ti. We
then set

S =
1√
n
HK, (185)

where H ∈ {−1, 1}n×n is the Walsh-Hadamard matrix of dimension n. Here, we assumed that n is a power of 2,
such that such a matrix exists. Otherwise, we can add rows of all zeros to both A and B, resulting in larger matrices
A ∈ Rn′×a and B ∈ Rn′×b, with n′ = 2⌈log2(n)⌉. Note that in (116-117) we further scale the result by

√
n, so

this cancels out the scaling by 1√
n

in (185). The gain for using the randomized Hadamard transform (185), is that
its special fast-Fourier transform (FFT) structure allows to compute SA (respectively, SB) using only O(an log n)
(respectively, O(bn log n)) additions and multiplications. Despite its simple implementation, the result of applying
the randomized Hadamard transform on A (or B) is quite similar to that of applying a “pure” random rotation on
A (or B) from various statistical perspectives [52], [53], [54].

Representative numeric example: To better illustrate how the building blocks above connect, we provide a
numerical example. We have implemented a product nested lattice codebook, with Λ′ = D3 (such that d′ = 3) as
the base lattice. The lattice D3 consists of all vectors in Z3 whose entries sum up to an even integer. In particular,
2Z3 ⊂ D3. The simple structure of D3 also gives rise to a very simple algorithm for computing QD3

(x) [45,
Algorithm 2]. The lattice D3 has the highest packing density among all lattices in R3 and its packing radius
satisfies [42] rpack(D3)/reff(D3) ≈ (0.74)1/3 ≈ 0.9045, such that its Voronoi region is quite close to a ball. We
also have that σ2(D3) =

3
24 , so that N(D3) ≈ 0.0787 (since covol(D3) = 2). This NSM is only slightly greater

than the smallest NSM attained by any lattice in R3, which is N(A∗
3) ≈ 0.0785.

We have used this base lattice with q = 6 to construct a product nested lattice code as in (183). We used the
same dither vectors Z̃1, Z̃2 ∈ VD3

for all ℓ = 1, . . . , L (these vectors were drawn once at the beginning of the
experiment). For this choice of d′ = 3 and q = 6, we can implement the decoder using a lookup table of size
(q3)2 = 26 log2 q < 215.6. For constructing the LUT, we used the value β = 1. While for this choice of β all
inner products between vectors in D3 are integer valued, because of the use of dithers, the entries in our LUT are

28

not integer-valued in general. We nevertheless rounded each of them to the nearest integer, and their range allows
representing each entry in the LUT using an int8 variable. Consequently, the total size of the LUT is less than
64Kbyte, and it can be fully stored in the L1 cache of a modern processing unit.

For the lattice D3, we have that the right-hand side of (181) evaluates to ≈ 0.6139. We therefore choose γ1 = 0.7,
and set our bank of possible values of γ as {i · γ1}9i=1. The corresponding value of β is given by (178).

We drew two random matrices A ∈ Rn×n, B ∈ Rn×n, with all entries iid N (0, 1), where n = 3 · 211. We used
the product nested lattice codebook from (183) with L = 211 for encoding each column of A (using the dither
vector Z̃1) and for encoding each column of B (using the dither vector Z̃2). Since the iid Gaussian distribution
is already rotation invariant, we have not implemented a random rotation. For each column, we also report the L
values of βi (equivalently γi) used for each column. The (empirical) entropy of this random variable (that takes
values in β1 · {i}9i=1) for the choice γ1 = 0.7 was found to be around ≈ 1.3bits. Since this value is only reported
once for every d′ = 3 symbols (using entropy coding), its contribution to the coding rate is about 0.43 bits per
symbol, such that the total rate of the coding scheme is Reff ≈ log2(6) + 0.43 ≈ 3.015 bits/symbol.

This approximate matrix multiplication algorithm attained 1
n3 ∥Â⊤B−A⊤B∥2F ≈ 0.0593. Let e = Â⊤B−A⊤B.

The empirical distribution of the normalized approximation error e/
√
n (among the n2 entries) is plotted in Figure 1.

Note that for Reff = 3.015, Theorem 2 states that no scheme can attain distortion smaller than of Γ(Reff) = 0.0304
for A and B drawn as above, and Theorem 1 shows that this can be attained using high-dimensional lattices. Thus,
our low-complexity implementation is not far of the optimal performance attained using optimal lattice codes. For
comparison, we also evaluated the approximation error for a simple 3-bit scalar quantization scheme where each
column ai is normalized by ∥ai∥∞ such that all its entries are in [−1, 1], then each entry ãi,t =

ai,t

∥ai∥∞
is quantized

to 1
4 round(4ãi,t), and in the end the quantized entries are rescaled again by ∥ai∥∞. The empirical error attained by

the 3-bit scalar quantizer is 1
n3 ∥Â⊤B −A⊤B∥2F ≈ 0.1668, about 3 times greater than the error attained using the

D3-based scheme with the same rate. The performance gap between the two scheme grows with n, as the random
variable ∥ai∥∞ concentrates around

√
2 lnn for large n. Thus, the dynamic range for the scalar quantizer increases

with n, which results in greater expected squared error.

VII. OPEN PROBLEMS

One can interpret our Lemma 2 as follows: Let P = N (0, 1) and Un ∼ P⊗n. Then for any random variable Y
we have that

n∑
i=1

RP (λi) ≤ I(Un;Y), (186)

where RP (D) is the quadratic rate-distortion function for a source with distribution P and (λ1, . . . , λn) are the
eigenvalues of Cov(Un|Y). While Lemma 2 establishes (186) for the Gaussian distribution, we were not able to
prove (186) for a general distribution, and we could neither find a counterexample. If (186) turns out to hold for
any P , the proof of Theorem 6 could be easily extended to show that

DIP,∗(R,P) = convex envelope of (ϕ(DP (R)), (187)

where DP (R) is the quadratic distortion-rate function for a source with distribution P . Thus, proving or disproving
that (186) holds for all P is an interesting problem for future research.

In Theorem 1 we have shown the existence of encoders and decoder for quantization for matrix multiplication
whose expected approximation error depends only on ∥A∥2F · ∥B∥2F and ∥A⊤B∥2F , and is optimal for A and B

whose entries are iid Gaussian. For iid Gaussian matrices we have that E[∥A∥2
F ∥B∥2

F]/n

E[∥A⊤B∥2
F]

= 1 so that the two error

terms in (3) are well-balanced. However, when the entries of A⊤B are large, that is when ∥A∥2
F ∥B∥2

F /n

∥A⊤B∥2
F

= o(1),
the error term in (3) that involves ∥A⊤B∥2F is the dominant one. On the other hand, in this case our bound from
Theorem 3 gives much smaller error, despite the fact that it is not optimal for Gaussian matrices. In particular, the
multiplicative error of the bound from Theorem 3 vanishes when ∥A∥2

F ∥B∥2
F /n

∥A⊤B∥2
F

= o(1). It is an interesting question
for future research to understand whether for any R > 0 there exist schemes that attain the optimal rate-distortion
tradeoff for Gaussian iid matrices and at the same time attain a multiplicative error E∥A⊤B−g(f1(A),f2(B))∥2

F

∥A⊤B∥2
F

that

vanishes when ∥A∥2
F ∥B∥2

F /n

∥A⊤B∥2
F

= o(1).

29

Fig. 1: The approximation error of the D3-based product nested lattice coding scheme with q = 6, for random iid
Gaussian matrices A,B ∈ Rn×n, n = 3 · 211. We plot the histogram of the entries of 1√

n
(Â⊤B − A⊤B) in blue.

For comparison, we also plot the histogram of the entries of 1√
n
(Â⊤B −A⊤B) for a 3-bit scalar quantizer in red.

ACKNOWLEDGEMENTS

The authors thank Omri Weinstein (HUJI) for helping them navigate through the literature on approximate matrix
multiplication and Yoon Kim (MIT) for explaining hardware and performance limitations of modern quantization
algorithms in LLMs.

APPENDIX A
CONVEX ENVELOPE OF Γ1(R)

Recall that ϕ(t) = 2t− t2 and

Γ1(R) = ϕ(2−2R). (188)

We show that the convex lower envelope of Γ1(R) is Γ(R). It is easy to verify that R 7→ Γ1(R) is decreasing,
concave on [0, 1/2) and convex on (1/2,∞). Therefore, it will consist of a linear segment between (0,Γ1(0) = 1)
and (R∗,Γ1(R

∗)) and agree with Γ1(R) for R > R∗. The point R∗ ≥ 1/2 is chosen such that the derivative of
Γ(R) is smooth and non-decreasing. Thus, the convex envelope of Γ1(R) is given by

Γ(R) =

{
Γ1(R

∗) + Γ′
1(R

∗)(R−R∗) R < R∗

Γ1(R) R ≥ R∗ (189)

30

where R∗ is chosen by requiring that Γ(0) = Γ1(0) = 1, or in other words, that

Γ1(R
∗)−R∗ · Γ′

1(R
∗) = 1. (190)

Since Γ′
1(R

∗) = −4 ln 2·2−2R∗
(1−2−2R∗

) and we can express Γ1(R
∗) as Γ1(R

∗) = 2·2−2R∗
(1−2−2R∗

)+2−4R∗
,

we have that (190) corresponds to

2−4R∗
+ 2 · 2−2R∗

(1− 2−2R∗
)(1 + 2 ln 2R∗) = 1

⇐⇒2 · 2−2R∗
(1− 2−2R∗

)(1 + 2 ln 2R∗) = (1− 2−2R∗
)(1 + 2−2R∗

)

⇐⇒2 · 2−2R∗
(1 + 2 ln 2R∗) = 1 + 2−2R∗

, (191)

⇐⇒1 + 4 ln 2R∗ = 22R
∗
. (192)

APPENDIX B
PROJECTIONS OF RANDOM UNIFORM ORTHOGONAL VECTORS

Let S ∼ Uniform(On(R)) and denote U =
√
nS1 and Z =

√
nS2. To prove (157), we first note that, by

symmetry

n2 = E∥U∥4 = E

(
n∑

i=1

U2
i

)2

= nE(U4
1) + n(n− 1)E(U2

1U
2
2), (193)

which implies

E(U2
1U

2
2) =

n− E(U4
1)

n− 1
=

n

n+ 2
. (194)

With this, we can write

E∥U[d]∥4 = E

(
d∑

i=1

U2
i

)2

= dE(U4
1) + d(d− 1)E(U2

1U
2
2) =

n

n+ 2
d(d+ 2). (195)

We move on to proving (158). We have that

E(U⊤
[d]Z[d])

2 = E

(
d∑

i=1

UiZi

)2

=

d∑
i=1

E(U2
i Z

2
i) +

∑
j ̸=i

E(UiUjZiZj) = dξ + d(d− 1)ν, (196)

where

ξ = E(U2
1Z

2
1), ν = E(U1U2Z1Z2), (197)

and the last equality in (196) follows by symmetry. Taking d = n, we get that U⊤
[n]Z[n] = U⊤Z = 0 w.p. 1.

Invoking (196) therefore gives

0 = nξ + n(n− 1)ν =⇒ ν = − ξ

n− 1
. (198)

Substituting this into (196), we obtain

E(U⊤
[d]Z[d])

2 = d

(
1− d− 1

n− 1

)
ξ =

d(n− d)

n− 1
ξ. (199)

In order to compute ξ, define e = U − Z. Note that the symmetry and orthogonality of U and Z implies that
e ∼ Uniform(

√
2nSn−1), where Sn−1 is the unit sphere in Rn. It therefor follows that

E(e41) = 4E(U4
1). (200)

On the other hand

E(e41) = E(U1 − Z1)
4 =

4∑
i=0

(
4

i

)
E(U i

1Z
4−i
1) = E(U4

1) + E(Z4
1) + 6E(U2

1Z
2
1) + 4E(U1Z

3
1) + 4E(U3

1Z1). (201)

31

By symmetry, we clearly have that E(Z4
1) = E(U4

1). We claim that E(U1Z
3
1) = 0. To see this, note that given Z,

the distribution of U is invariant to negation (in other words pU |Z=z(u) = pU |Z=z(−u)). By symmetry, this also
implies that E(U3

1Z1) = 0. We therefore have that

4E(U4
1) = E(e41) = 2E(U4

1) + 6ξ (202)

=⇒ξ =
E(U4

1)

3
=

n

n+ 2
. (203)

Substituting this into (199), we obtain

E(U⊤
[d]Z[d])

2 = d · n(n− d)

(n+ 2)(n− 1)
, (204)

as claimed.
Finally, we move on to establish (165). It is easy to see that the expectation of all terms including Z1, Z2 is zero,

and therefore

E(eMeM̄) = ϕ(D)E
[(

ρ∥U[d]∥2 +
√
1− ρ2U⊤

[d]Z[d]

)(
ρ∥U ¯[d]∥

2 +
√
1− ρ2U⊤

¯[d]
Z ¯[d]

)]
, (205)

where ¯[d] = [n] \ [d] = {d+ 1, . . . , n}. By the same consideration as above, the cross terms are zero. Note that by
definition, ∥U[d]∥2 + ∥U ¯[d]∥2 = ∥U∥2 = n, and we therefore have

E(eMeM̄) = ϕ(D)

ρ2E (∥U[d]∥2(n− ∥U[d]∥2)
)
+ (1− ρ2)E

 d∑
i=1

UiZi

n∑
j=d+1

UjZj

 (206)

= ϕ(D)
[
ρ2E

(
∥U[d]∥2(n− ∥U[d]∥2)

)
+ (1− ρ2)d(n− d)E (U1U2Z1Z2)

]
(207)

= ϕ(D)

[
ρ2
(
dn− n

n+ 2
d(d+ 2)

)
+ (1− ρ2)d(n− d)ν

]
. (208)

Recalling that

ν = − ξ

n− 1
= − n

(n+ 2)(n− 1)
, (209)

and substituting this into (208), we obtain

E(eMeM̄) = ϕ(D)

[
ρ2

n

n+ 2
d(n− d)− (1− ρ2)

n

n+ 2

d(n− d)

(n− 1)

]
(210)

= ϕ(D)
n

(n+ 2)(n− 1)
d(n− d)

(
ρ2n− 1

)
. (211)

Our claim follows since n
(n+2)(n−1) ≤

1
n for any n > 1.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal,” Numerische mathematik, vol. 13, no. 4, pp. 354–356, 1969.
[2] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz

et al., “Discovering faster matrix multiplication algorithms with reinforcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.
[3] R. Duan, H. Wu, and R. Zhou, “Faster matrix multiplication via asymmetric hashing,” in 2023 IEEE 64th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 2023, pp. 2129–2138.
[4] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, New Bounds for Matrix Multiplication: from Alpha to Omega, 2024, pp. 3792–3835.
[5] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa, “Quip#: Even better llm quantization with hadamard incoherence and lattice

codebooks,” arXiv preprint arXiv:2402.04396, 2024.
[6] S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, M. Jaggi, D. Alistarh, T. Hoefler, and J. Hensman, “Quarot: Outlier-free 4-bit inference

in rotated llms,” arXiv preprint arXiv:2404.00456, 2024.
[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,”

CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
[8] Y. Polyanskiy and Y. Wu, Information theory: From coding to learning. Cambridge university press, 2024.
[9] O. Ordentlich and U. Erez, “A simple proof for the existence of good pairs of nested lattices,” IEEE Transactions on Information Theory,

vol. 62, no. 8, pp. 4439–4453, 2016.
[10] M. W. Mahoney et al., “Randomized algorithms for matrices and data,” Foundations and Trends R⃝ in Machine Learning, vol. 3, no. 2,

pp. 123–224, 2011.
[11] P.-G. Martinsson and J. A. Tropp, “Randomized numerical linear algebra: Foundations and algorithms,” Acta Numerica, vol. 29, pp.

403–572, 2020.

http://arxiv.org/abs/1810.04805

32

[12] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algorithms for matrices i: Approximating matrix multiplication,” SIAM
Journal on Computing, vol. 36, no. 1, pp. 132–157, 2006.

[13] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, 2002, pp. 380–388.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,” in Proceedings
of the twentieth annual symposium on Computational geometry, 2004, pp. 253–262.

[15] R. Pagh, “Compressed matrix multiplication,” ACM Transactions on Computation Theory (TOCT), vol. 5, no. 3, pp. 1–17, 2013.
[16] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” Advances in neural information processing systems, vol. 29,

2016.
[17] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural networks: Training neural networks with low

precision weights and activations,” Journal of Machine Learning Research, vol. 18, no. 187, pp. 1–30, 2018.
[18] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using vector quantization,” arXiv preprint

arXiv:1412.6115, 2014.
[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of neural networks

for efficient integer-arithmetic-only inference,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 2704–2713.

[20] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale,” Advances in
Neural Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[21] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He, “Zeroquant: Efficient and affordable post-training quantization for
large-scale transformers,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 168–27 183, 2022.

[22] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han, “Smoothquant: Accurate and efficient post-training quantization for large
language models,” in International Conference on Machine Learning. PMLR, 2023, pp. 38 087–38 099.

[23] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[24] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: Accurate quantization for generative pre-trained transformers,” in The
Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=tcbBPnfwxS

[25] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE transactions on pattern analysis and
machine intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[26] D. Blalock and J. Guttag, “Multiplying matrices without multiplying,” in International Conference on Machine Learning. PMLR, 2021,
pp. 992–1004.

[27] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit goes down: Revisiting the quantization of neural networks,”
arXiv preprint arXiv:1907.05686, 2019.

[28] R. Guo, S. Kumar, K. Choromanski, and D. Simcha, “Quantization based fast inner product search,” in Artificial intelligence and statistics.
PMLR, 2016, pp. 482–490.

[29] D. Malak, “Distributed structured matrix multiplication,” arXiv preprint arXiv:2405.02904, 2024.
[30] D. Krithivasan and S. S. Pradhan, “Lattices for distributed source coding: Jointly gaussian sources and reconstruction of a linear function,”

IEEE Transactions on Information Theory, vol. 55, no. 12, pp. 5628–5651, 2009.
[31] A. B. Wagner, “On distributed compression of linear functions,” IEEE Transactions on Information Theory, vol. 57, no. 1, pp. 79–94,

2010.
[32] A. Ingber, T. Courtade, and T. Weissman, “Compression for quadratic similarity queries,” IEEE transactions on information theory, vol. 61,

no. 5, pp. 2729–2747, 2015.
[33] I. Ochoa, A. Ingber, and T. Weissman, “Compression schemes for similarity queries,” in 2014 Data Compression Conference, 2014, pp.

332–341.
[34] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1920–1933, 2020.
[35] A. Adler, J. Tang, and Y. Polyanskiy, “Efficient representation of large-alphabet probability distributions,” IEEE Journal on Selected Areas

in Information Theory, vol. 3, no. 4, pp. 651–663, 2022.
[36] A. Gersho and R. M. Gray, Vector quantization and signal compression. Springer Science & Business Media, 2012, vol. 159.
[37] R. Zamir, Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information

Theory. Cambridge University Press, 2014.
[38] U. Erez and R. Zamir, “Achieving 1/2 log (1+ snr) on the AWGN channel with lattice encoding and decoding,” IEEE Transactions on

Information Theory, vol. 50, no. 10, pp. 2293–2314, 2004.
[39] A. J. Stam, “Limit theorems for uniform distributions on spheres in high-dimensional euclidean spaces,” Journal of Applied probability,

vol. 19, no. 1, pp. 221–228, 1982.
[40] O. Ordentlich, O. Regev, and B. Weiss, “Bounds on the density of smooth lattice coverings,” arXiv preprint arXiv:2311.04644, 2023.
[41] G. Forney and G. Ungerboeck, “Modulation and coding for linear gaussian channels,” IEEE Transactions on Information Theory, vol. 44,

no. 6, pp. 2384–2415, 1998.
[42] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. New York: Springer-Verlag, 1988.
[43] E. Agrell and B. Allen, “On the best lattice quantizers,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 7650–7658, 2023.
[44] M. S. Viazovska, “The sphere packing problem in dimension 8,” Annals of mathematics, pp. 991–1015, 2017.
[45] J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Transactions on Information

Theory, vol. 28, no. 2, pp. 227–232, 1982.
[46] H. Cohn and A. Kumar, “Optimality and uniqueness of the leech lattice among lattices,” Annals of mathematics, pp. 1003–1050, 2009.
[47] H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska, “The sphere packing problem in dimension 24,” Annals of mathematics,

vol. 185, no. 3, pp. 1017–1033, 2017.
[48] A. Vardy and Y. Be’ery, “Maximum likelihood decoding of the leech lattice,” IEEE Transactions on Information Theory, vol. 39, no. 4,

pp. 1435–1444, 1993.
[49] A. Vardy, “Even more efficient bounded-distance decoding of the hexacode, the golay code, and the leech lattice,” IEEE Transactions on

Information Theory, vol. 41, no. 5, pp. 1495–1499, 1995.
[50] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, vol. 45, no. 5,

pp. 1639–1642, 1999.

https://openreview.net/forum?id=tcbBPnfwxS

33

[51] J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of polytopes, and quantization,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 211–226, 1982.

[52] N. Ailon and B. Chazelle, “The fast johnson–lindenstrauss transform and approximate nearest neighbors,” SIAM Journal on computing,
vol. 39, no. 1, pp. 302–322, 2009.

[53] E. Liberty, Accelerated dense random projections. Yale University New Haven, CT, 2009.
[54] J. A. Tropp, “Improved analysis of the subsampled randomized hadamard transform,” Advances in Adaptive Data Analysis, vol. 3, no.

01n02, pp. 115–126, 2011.

	Introduction and main results
	Importance of quantization for modern applications
	Sketch of the proof
	Related work
	Paper organization
	Notation

	Compression for Inner-Product Computation: General Problem Setup and Simple Bounds
	Optimal Decoder and Error Expressions
	Simple Lower Bounds

	Compression for Inner-Product Computation: The Symmetric Case
	Upper Bound
	Lower Bound
	The Symmetric Gaussian case

	Compression for Matrix Multiplication
	Setup
	Basic Properties and Bounds
	Maximum Entropy Matrices
	Fundamental Limits
	The Symmetric Gaussian case

	Lattice Quantization Scheme for Matrix Multiplication of Arbitrary Matrices
	Proof of Theorem 11, Part 1
	Dithered Nested Lattice Quantization for Inner Product
	Analysis
	Time Sharing

	Proof of Theorem 11, Part 2
	Proof of Theorem 12

	Practical Implementation of Nested Lattice Quantizers
	Open problems
	Appendix A: Convex envelope of 1(R)
	Appendix B: Projections of Random Uniform Orthogonal Vectors
	References

